版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆江蘇省吳江市平望中學(xué)高一上數(shù)學(xué)期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知α為第二象限角,,則cos2α=()A. B.C. D.2.若點關(guān)于直線的對稱點是,則直線在軸上的截距是A.1 B.2C.3 D.43.若,,則角的終邊在A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知函數(shù),則()A. B.C. D.15.下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)是()A. B.C. D.6.已知某產(chǎn)品的總成本C(單位:元)與年產(chǎn)量Q(單位:件)之間的關(guān)系為C=310Q2+3000.設(shè)該產(chǎn)品年產(chǎn)量為Q時的平均成本為fA.30 B.60C.900 D.1807.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則8.下列四個選項中正確的是()A B.C. D.9.已知函數(shù),則等于A.2 B.4C.1 D.10.一個多面體的三視圖如圖所示,則該多面體的表面積為()A.21+ B.18+C.21 D.18二、填空題:本大題共6小題,每小題5分,共30分。11.天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景的摩天輪.如圖,已知天津之眼的半徑是55m,最高點距離地面的高度為120m,開啟后按逆時針方向勻速轉(zhuǎn)動,每30轉(zhuǎn)動一圈.喜歡拍照的南鳶同學(xué)想坐在天津之眼上拍海河的景色,她在距離地面最近的艙位進艙.已知在距離地面超過92.5m的高度可以拍到最美的景色,則在天津之眼轉(zhuǎn)動一圈的過程中,南鳶同學(xué)可以拍到最美景色的時間是_________分鐘12.已知函數(shù),則滿足的的取值范圍是___________.13.函數(shù)的單調(diào)遞增區(qū)間為___________.14.方程在上的解是______.15.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于-1,另一個大于1,那么實數(shù)m的取值范圍是________16.已知函數(shù),則函數(shù)的所有零點之和為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求證:(1)3∈A;(2)偶數(shù)4k-2(k∈Z)不屬于A18.已知點,圓.(1)求過點且與圓相切的直線方程;(2)若直線與圓相交于,兩點,且弦的長為,求實數(shù)的值.19.計算求值:(1)(2)若,求的值.20.設(shè)為實數(shù),函數(shù).(1)若,求的取值范圍;(2)討論的單調(diào)性;(3)是否存在滿足:在上值域為.若存在,求的取值范圍.21.某地為踐提出的“綠水青山就是金山銀山”的理念,大力開展植樹造林.假設(shè)一片森林原來的面積為a畝,計劃每年種植一些樹苗,使森林面積的年平均增長率為20%,且x年后森林的面積為y畝(1)列出y與x的函數(shù)解析式并寫出函數(shù)的定義域;(2)為使森林面積至少達到6a畝至少需要植樹造林多少年?參考數(shù)據(jù):
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】,故選A.2、D【解析】∵點A(1,1)關(guān)于直線y=kx+b的對稱點是B(﹣3,3),由中點坐標(biāo)公式得AB的中點坐標(biāo)為,代入y=kx+b得①直線AB得斜率為,則k=2.代入①得,.∴直線y=kx+b為,解得:y=4.∴直線y=kx+b在y軸上的截距是4.故選D.3、D【解析】本題考查三角函數(shù)的性質(zhì)由知角可能在第一、四象限;由知角可能在第三、四象限;綜上得角的終邊在箱四象限故正確答案為4、D【解析】由分段函數(shù)定義計算【詳解】,所以故選:D5、C【解析】是非奇非偶函數(shù),在定義域內(nèi)為減函數(shù);是奇函數(shù),在定義域內(nèi)不單調(diào);y=-x3是奇函數(shù),又在定義域內(nèi)為減函數(shù);非奇非偶函數(shù),在定義域內(nèi)為減函數(shù);故選C6、B【解析】利用基本不等式進行最值進行解題.【詳解】解:∵某產(chǎn)品的總成本C(單位:元)與年產(chǎn)量Q(單位:件)之間的關(guān)系為C=∴f(Q)=當(dāng)且僅當(dāng)3Q10=3000Q∴fQ的最小值是60故選:B7、D【解析】A項,可能相交或異面,當(dāng)時,存在,,故A項錯誤;B項,可能相交或垂直,當(dāng)
時,存在,,故B項錯誤;C項,可能相交或垂直,當(dāng)
時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關(guān)系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質(zhì);直線與平面、平面與平面垂直的判定與性質(zhì).8、D【解析】根據(jù)集合與集合關(guān)系及元素與集合的關(guān)系判斷即可;【詳解】解:對于A:,故A錯誤;對于B:,故B錯誤;對于C:,故C錯誤;對于D:,故D正確;故選:D9、A【解析】由題設(shè)有,所以,選A10、A【解析】由題意,該多面體的直觀圖是一個正方體挖去左下角三棱錐和右上角三棱錐,如下圖,則多面體的表面積.故選A.考點:多面體的三視圖與表面積.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】借助三角函數(shù)模型,設(shè),以軸心為原點,與地面平行的直線為軸,建立直角坐標(biāo)系,由題意求出解析式,再令,解三角不等式即可得答案.【詳解】解:如圖,設(shè)座艙距離地面最近的位置為點,以軸心為原點,與地面平行的直線為軸,建立直角坐標(biāo)系.設(shè)時,南鳶同學(xué)位于點,以為終邊的角為,根據(jù)摩天輪轉(zhuǎn)一周大約需要,可知座艙轉(zhuǎn)動的角速度約為,由題意,可得,,令,,可得,所以南鳶同學(xué)可以拍到最美景色的時間是分鐘,故答案為:10.12、【解析】∵在x∈(0,+∞)上是減函數(shù),f(1)=0,∴0<3-x<1,解得2<x<3.13、【解析】根據(jù)復(fù)合函數(shù)“同增異減”的原則即可求得答案.【詳解】由,設(shè),對稱軸為:,根據(jù)“同增異減”的原則,函數(shù)的單調(diào)遞增區(qū)間為:.故答案為:.14、##【解析】根據(jù)三角函數(shù)值直接求角.【詳解】由,得或,即或,又,故,故答案為.15、(0,1)【解析】結(jié)合二次函數(shù)的性質(zhì)得得到,在-1和1處的函數(shù)值均小于0即可.【詳解】結(jié)合二次函數(shù)的性質(zhì)得得到,在-1和1處的函數(shù)值均小于0即可,實數(shù)m滿足不等式組解得0<m<1.故答案為(0,1)【點睛】這個題目考查了二次函數(shù)根的分布的問題,結(jié)合二次函數(shù)的圖像的性質(zhì)即可得到結(jié)果,題型較為基礎(chǔ).16、0【解析】令,得到,在同一坐標(biāo)系中作出函數(shù)的圖象,利用數(shù)形結(jié)合法求解.【詳解】因為函數(shù),所以的對稱中心是,令,得,在同一坐標(biāo)系中作出函數(shù)的圖象,如圖所示:由圖象知:兩個函數(shù)圖象有8個交點,即函數(shù)有8個零點由對稱性可知:零點之和為0,故答案為:0三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】(1)由3=22-12即可證得;(2)設(shè)4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分當(dāng)m,n同奇或同偶時和當(dāng)m,n一奇,一偶時兩種情況進行否定即可.試題解析:(1)∵3=22-12,3∈A;(2)設(shè)4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、當(dāng)m,n同奇或同偶時,m-n,m+n均為偶數(shù),∴(m-n)(m+n)為4的倍數(shù),與4k-2不是4的倍數(shù)矛盾2、當(dāng)m,n一奇,一偶時,m-n,m+n均為奇數(shù),∴(m-n)(m+n)為奇數(shù),與4k-2是偶數(shù)矛盾綜上4k-2不屬于A18、(1)或;(2).【解析】(1)考慮切線的斜率是否存在,結(jié)合直線與圓相切的的條件d=r,直接求解圓的切線方程即可(2)利用圓的圓心距、半徑及半弦長的關(guān)系,列出方程,求解a即可【詳解】(1)由圓的方程得到圓心,半徑.當(dāng)直線斜率不存在時,直線與圓顯然相切;當(dāng)直線斜率存在時,設(shè)所求直線方程為,即,由題意得:,解得,∴方程為,即.故過點且與圓相切的直線方程為或.(2)∵弦長為,半徑為2.圓心到直線的距離,∴,解得.【點睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查切線方程的求法,考查了垂徑定理的應(yīng)用,考查計算能力19、(1)(2)【解析】(1)利用指數(shù)和對數(shù)運算法則直接計算可得結(jié)果;(2)分子分母同除即可求得結(jié)果.【小問1詳解】原式.小問2詳解】,.20、(1);(2)在上單調(diào)遞增,在上單調(diào)遞減;(3)不存在.【解析】(1)直接求出,從而通過解不等式可求得的取值范圍;(2)根據(jù)二次函數(shù)的單調(diào)性即可得出分段函數(shù)的單調(diào)性;(3)首先判斷出,從而得到,即在上單調(diào)遞增;然后把問題轉(zhuǎn)化為在上有兩個不等實數(shù)根的問題,從而判斷出不存在的值.【詳解】(1)∵,∴,即,所以,所以的取值范圍為.(2)易知,對于,其對稱軸為,開口向上,所以在上單調(diào)遞增;對于,其對稱軸為,開口向上,所以在上單調(diào)遞減,綜上知,在上單調(diào)遞增,在上單調(diào)遞減;(3)由(2)得,又在上的值域為,所以,又∵在上單調(diào)遞增,∴,即在上有兩個不等實數(shù)根,即在上有兩個不等實數(shù)根,即在上有兩個不等實數(shù)根,令,則其對稱軸為,所以在上不可能存在兩個不等的實
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 連鎖藥店營業(yè)款財務(wù)制度
- 國企項目部財務(wù)制度匯編
- 港股財務(wù)制度
- 公司商品財務(wù)制度
- 建立醫(yī)保財務(wù)制度
- 私募證券基金財務(wù)制度
- 軍休所管理制度
- 公司內(nèi)部資料印刷制度
- 基礎(chǔ)雨天施工方案(3篇)
- 斜井地鐵施工方案(3篇)
- 通風(fēng)設(shè)備采購與安裝合同范本
- 化工設(shè)備清洗安全課件
- 光伏收購合同范本
- T∕ZZB 1815-2020 塑料 汽車配件用再生聚碳酸酯(PC)專用料
- 2025~2026學(xué)年吉林省吉林市一中高一10月月考語文試卷
- 天津市南開中學(xué)2025-2026學(xué)年高一上數(shù)學(xué)期末調(diào)研模擬試題含解析
- 麻辣燙創(chuàng)業(yè)商業(yè)計劃書范文
- 微專題:突破語病題+2026屆高考語文二輪復(fù)習(xí)
- 東呈集團內(nèi)部控制中存在的問題及對策研究
- 高科技產(chǎn)業(yè)園區(qū)運營管理手冊
- 羽毛球裁判二級考試題庫及答案
評論
0/150
提交評論