版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AIasaScienti?cCollaborator
Frombiologytoblackholes,ChatGPTisacceleratingresearchJanuary2026
Introduction:WhyAIforScienceMatters
8.4million
averageweeklymessages
onadvancedtopicsinthehardsciencesandmathematics
Roughly
1.3million
weekly
ChatGPTusers
focusonadvancedmath&sciencetopicsworldwide
Thenumberofmonthly
advancedsciencemessages
grewnearly50%
lastyear
OpenAIisbuildingtoolstohelpresearchersgenerateinsights,acceleratescienti?cdiscoveryandtranslatethoseinsightsintoreal-worldimpact.AcrossChatGPT,researchers,students,STEMfacultyandengineersalreadyuseAItoreadandsynthesizetechnicalliteratures,debugandwritecode,analyzedata,andplanexperiments.Eachweek,ChatGPTseesalmost8.4millionmessagesonadvancedtopicsinthesciencesandmathematics.Thesenowcomefromroughly1.3millionweeklyusersworldwide.
Onlyabout0.1percentoftheglobalpopulationidenti?esasscientists,accordingto
UNESCO
,andyettheyhaveanoutsizedimpact.Scienti?cresearchdrivestheengineofprogresstowardahealthier,moreprosperous,andmoreresilientfuture.Newmedicines,newtechnologies,andnewindustriescomefromnewknowledgeputtopracticaluse.Asmallgroupofearlytwentieth-centuryphysicistslaidthefoundationsofquantummechanicsthroughabstractresearchthat,decadeslater,wouldunderpinmuchofthemoderndigitaleconomy,nowmeasuredinthetensoftrillionsofdollars.Basicresearch–workdonebeforethepayo?isclear–wasthesourceofthatknowledge.In1947,scientistsatBellLabscreatedthe?rstworkingtransistor,
based
oninsightsfromquantumphysics.Thetransistorbecameabuildingblockofcomputers,phones,andtoday’sdigitaltechnology.TheGlobalPositioningSystem(GPS)reliesonEinstein’s
insightsintorelativity
toguideourcarsandkeepatomicclocksaligned.
2
Yetinmanydomains,itisgettinghardertokeepmakingprogress.Economistsandresearchanalystspointtofalling“researchproductivity,”meaningmorepeople,time,andmoneyarerequiredtoproducethesamenumberofinsights.Semiconductorso?erawell-knownexample:sustainingMoore’sLawtodoublethenumberoftransistorsinanintegratedcircuiteverytwoyearshasrequiredadramaticincreaseine?ort,withthenumberofresearchersneededtodayestimatedatmorethan
18times
whatwasneededintheearly1970s.Asknowledgegrowsmorecomplex,eachnewgenerationofresearchersfacesaheavierburdenjusttoreachthefrontier,whichlengthenstheirtrainingtimeandnarrowstheirspecializations.Institutionally,researchhasshiftedtowardlargerteams,withgrowingoverheadforgrantproposals,compliance,reporting,andcoordinationcosts.
Inmedicine,scienti?cadvanceshavesavedcountlesslives.Worldwide
lifeexpectancyrose
fromroughly32yearsin1900toabout73yearsin2023(andtomorethan78yearsintheUnitedStates).Buttheremainingburdenofdiseaseisheavy.ButtheWorldHealthOrganizationreportsthatnoncommunicablediseasessuchasstroke,heartdisease,cancer,anddiabetesstillaccountforabout
74%ofglobaldeaths
.Evenwhenprogressisrapid,turningnewideasintoavailabletreatmentstakestime.Onaverage,ittakes
10-15years
fromtargetdiscoverytoregulatoryapprovalofanewdrugintheUnitedStates,alagimposedonpatientswhoneednewandbettertreatments.
Makingprogressfasterwillsavelivesandimprovethem.AIisalreadyhelpingtoaddressthebottlenecksthatslowsciencedown.Modernresearchisfragmentedacrossdisciplinesandconstrainedbylimitsthatarebothcognitiveandlogistical:readinganddigestingenormousliteraturestodeterminewhatisknown,translatingideasintomathematicsandcode,settingupanalysesandsimulations,checkingcalculations,searchinghugedesignspaces,anddecidingwhichfutureexperimentsarethemostpromising.Usedwell,AIcanserveasahigh-throughputpartnerforthought,computation,andstructuredreasoning,shorteningthecyclefromhypothesistotestandincreasingthecapacityofresearchersworkingaloneandinteams,evenacrossdisciplinarybarriers.
KevinWeil,VPofOpenAIforScience,describestheopportunitythisway:“AIisincreasinglybeingusedasascienti?ccollaborator,andwe’reseeingitsimpactgrowinrealresearchsettings.Moreresearchersareusingadvancedreasoningsystemstomakeprogressonopenproblems,interpretcomplexdata,anditeratefasterinexperimentalwork.Thatusagehasbeengrowingquicklyoverthepastyear,andtheresultsarestartingtoshowupacross?elds.We’restillearly,butthepaceofadoptionandthequalityoftheworksuggestscienceisenteringanewaccelerationphase.”
OpenAIisproudtoworkwithresearchpartnersacrossgovernmentagencies,nationallaboratories,academia,andmedicine,includingtheU.S.DepartmentofEnergy,LawrenceLivermoreNationalLaboratory,theU.S.CentersforDiseaseControlandPrevention,HarvardUniversity,MassachusettsInstituteofTechnology,theUniversityofOxford,TexasA&MUniversity,andBostonChildren’sHospital.
3
Thisreportdetails:
1.HowAItoolsarealreadybeingusedinday-to-dayresearchwork?ows,includingliteraturesynthesis,codegenerationanddebugging,dataanalysis,simulationsupport,andexperimentplanning
2.WhatearlyresultssuggestaboutAI’spotentialtosupportnewbreakthroughs
3.HowindividualscientistsacrossmultipledisciplineshaveusedChatGPTtomakeprogressintheir?eld
4.PolicysuggestionstosupportcontinuedAIprogressinscienceandmath
4
Thescaleofscienti?candmathematicalworkonChatGPT
AcrossChatGPT,asmallbutconsequentialcohortofresearchersusesOpenAI’sAImodelsforsophisticatedtasksrangingfromtechnicalderivations,advancedmathematics,engineeringsimulationandmodeling,andotheradvancedproblem-solving.ThisincludesscientistsandmathematiciansspanningPhDcandidatesandpost-docstoworkingresearchersandSTEMfaculty.
BasedonaninternalanalysisofafullrandomsampleofanonymizedChatGPTconversationsfromJanuarythroughDecember2025,averageweeklymessagecountsonadvancedscienceandmathtopicsgrewabout47%,from5.7millionmessagestonearly8.4millionmessagesoverthecourseof2025.AsofJanuary2026,therearenearly1.3millionweeklyusersdiscussingadvancedtopicsinscienceandmath.
Together,thesesignalsshowhowChatGPTisacceleratingadvancedresearch:withtensofmillionsofadvancedhard-scienceandmathpromptseachmonth,generatedbyalargeandgrowingcohortusingthesystemforseriousscienti?candengineeringworktobene?tsocietyandsupporteconomicgrowth.
Here’showusagebreaksdownacrossdisciplinesamongourcohortofresearch-focusedusers:
5
WhatscientistsandmathematiciansactuallydowithChatGPT
Scientists,mathematicians,andengineersuseChatGPTasahighlyavailabletechnicalcollaborator:atoolwithwhichtheycaniterateoncalculations,translateideasintocode,interrogateassumptions,andcompresscomplexmaterialsintoworkablementalmodels.InOpenAI’sanalysis,“advanced”hardsciencepromptsarede?nedasthosebeingorientedtowardresearch,andrequiringgraduate-levelorresearch-levelexpertisetoanswercompetently.Withinthatcohort,behaviordi?ersfromtypicalusersinwaysthatmapdirectlyontomodernresearchwork?ows.
Researchtasksclusterindomainssuchascoding(drafting,reworking,anddebuggingcode),dataanalysis(cleaningandmergingdatasets,runningstatistics,interpretingresults),mathematicalreasoning(derivations,proofstrategies,algebraicchecking,longcalculations,translatingbetweenformalisms),andliteraturereviewandsynthesis(?ndingreferences,understandingrecentwork).
ContrastedwithtypicalusersofChatGPT,advancedscienceandmathusers:
●Sendroughly3.5×moremessagesthanthebaseline
●Sendcoding-relatedmessagesnearly12×moreoften
●Average9informational-overviewpromptsperweekvs.1.5prompts
6
Categorizedbymostcommontasks,hereishowthiscohorttendstouseChatGPT,:
7
AIatthefrontierofmathandscience
FrontierAIcapabilitiesinmathematics
Recentprogress
Overthelasttwoyears,largelanguagemodelshaveprogressedfromearly,unevenperformanceonbasicarithmetictohandlingmulti-stepmathematicalreasoningthatcanbeusefulinrealmathematicalwork.Muchofthatimprovementcamefrommethodsthatencouragestep-by-stepreasoning,andfromtighterintegrationwithtoolslikecalculatorsandcodeexecutionforexactcomputation.Asmodelsimproved,benchmarkingalsoshiftedtowardhardertestsdesignedtomeasuredeeperreasoningwhilereducing“patternmatching”wins.
In2025andearly2026,thegreatestimpacthascomefromtest-timecomputescaling,or“slowthinking.”Insteadofcommittingquicklytoonepath,amodelwillspendmorecomputationexploringalternativesandself-checking.Atthesametime,approachestotrainingthatrewardveri?ableoutcomes,suchasproducingacorrect?nalanswerorexecutablecode,havepushedmathandcodingtobecomemorereliable,andcorrectoftenenoughtobeusefulwithhumanguidance.
OnesignofthisshiftcamewithInternationalMathematicalOlympiadcoverageinJuly2025,whenanOpenAImodelachieved
gold-levelperformance
onthe2025problemsetalongsideDeepMind.
Currentcapabilities
GPT-5.2’ssteadyadvanceinmathematicalcapabilitiesstemsfromstrongerlong-horizonreasoning,moresystematicveri?cationhabits,andbetteruseofcheckabletools.AIME,theAmericanInvitationalMathematicsExamination,isdesignedtotestmulti-stepproblemsolving:GPT-5.2ThinkingachievedaperfectscoreonAIME2025withoutexternaltools.TheGPT-5.2series(e.g.ThinkingandPro)hasprogressedpastcompetition-levelperformancetowardmathematicaldiscovery,includingworkonestablishedopenproblems.
Onresearch-stylebenchmarking,the“Google-proof”FrontierMathproblemsethasbeenconstructedtobeaccessibleonlytotrueexperts;i.e.evenasmartPhDstudentinmathcannotsolvetheminafewhoursofwork.Onthatbenchmark,GPT-5.2Thinkinghassolved
40.3%ofproblems
inTiers1–3.
8
Performancestilldropsonthehardesttier,whereGPT-5.2Prohasscored
31%onFrontierMathTier4
onasetofproblemsthatcanbedescribedas“miniresearchprojects.”
AsecondmajorcapabilityleaphasoccurredasGPT-5.2isincreasinglypairedwithformalveri?cationwork?ows.Inoneprominentintegration,GPT-5.2generatesnaturallanguageproofsandusesAristotle,athird-partyLLM,toformalizethoseproofsinLean,whichisaproofassistantwhereproofsarewritteninaformacomputerchecksstepbystep,withthesystemdetectingandcorrectinggapsduringformalization.
Theseintegrationsmatterbecauseonelongstandingfailuremodeforlanguagemodelsinmathematicshappenswhenasolution“l(fā)ooksright”,butisn’t:i.e.argumentsthatappearplausible,butcontainsubtlegaps.Lean-checkedproofssubstantiallyraisethestandardofcon?denceinaproofbyforcingexplicit,mechanicallycheckedstepsunderastatedformalization.
Erd?sproblems,AIsolutions
PaulErd?s(1913–1996)wasaglobe-trottingHungarianmathematicianwholivedoutofasuitcase,movingfromcampustocampusashesoughtoutfellowmathresearchers.The“Erd?sproblems”arethevastsetofquestionsandconjecturesheposed,rangingfromdeceptivelysimplepuzzlestoproblemsthatstillresistthebesttechniqueswehave.Theproblemshaveactedliketrailmarkersformodernmathematics:clarifyingwhatwedon’tyetunderstand,seedingwholeresearchprograms,anddrawinggenerationsofmathematicianstowardtheedgesoftheknown.
Inearly2026,GPT-5.2hascontributedtosolutionstoseveralopenErd?sproblemswiththehelpoftoolslikeAristotleandLean,andwiththesolutionsvalidatedbyTerenceTao.Problems
#281
,
#728
,
#729
arenowlistedasproved,and
#397
asdisproved.WhilemathematicianscautionthatErd?sproblemsvaryenormouslyindi?culty,thesesolutionspointtotheincreasingcapabilityofOpenAImodelstodorealmathematicalworkandmakenovelcontributionswithminimalguidance.
Near-termpotential
Somesigni?cantmathematicaldiscoveriescantaketheformofstitchingknownmethodstogetherto?ndthecorrectargument.GPT5.2candothisnowinmanycases.Otherdiscoveriesinvolveinventingentirelynewkindsofmath,asNewtoninventedcalculustounderstanddynamics(theforces,massandenergythatexplainchangesinmotion).ThatisbeyondcurrentAImodels.Butathirdtypeofsigni?cantdiscoveryinvolvesestablishingconnectionsbetweentwo?elds,andbringingtheknownmachinery,resultsandtoolsofone?eldtotheother(e.g.algebraicgeometry,whicharosefromabstractalgebraandclassicalgeometry).ModestexamplesofthishavealreadyoccurredwithAI,andwebelievethesigni?canceofthoseconnections,andthesub?eldscreatedfromthem,willincreaseinthenearfuture.
Atthesametime,muchofAI’snear-termvaluewillbeintransformingwork?ows.GPT-5.2canproposeanditerateonsolutionpaths,whileexternaltoolsenforcecorrectnessthroughexactcomputationorformalchecking.Thisalignswithbroadertrendstowardhybridapproachesandauto-formalization,
9
whereinformalmathistranslatedintoformallanguageslikeLeansothatcorrectnesscanbeveri?edmechanically.GPT-5.2isalreadyusefulforliteraturereview(surveyingwhatisknown)tolocatetheedgeofknowledgeandsurfaceunexpectedorobscurereferences.Itisusefulincomingupwithproofs,critiquingthem,simplifyingthemandsuggestingproofstrategies.
Ifthistrajectorycontinues,GPT-5.2’snear-termimpactislikelytoshowupasabroadproductivityupgradeformathematicalresearchers,aswellasscienceandengineeringteams(sincemathisacorecomponentofmuchscienti?candengineeringwork):thiswillmanifestasfastertranslationfromamessyproblemdescriptiontoacleanmathematicalstatement,fewerdroppedconstraintsinmulti-stepderivations,morereliabledebuggingofcalculationsandproofs,andagrowingshareofresultsthatcanbebackedbyformalveri?cation.
10
FrontierAIcapabilitiesinscience
Acrossdisciplinessuchasphysics,chemistry,andbiology,ChatGPT-classLLMsincreasinglysupporttechnicalreasoningandtool-mediatedresearchwork?ows,aswellasscienti?cwriting.BenchmarkslikeGPQA,agraduate-levelsetof“Google-proof”questionsauthoredbydomainexperts,initiallyshowedasigni?canthumanadvantage,withexpertsreaching65%accuracywhiletheGPT-4baselinereached39%.OpenAInowreports
GPQADiamondaccuracy
of93.2%forGPT-5.2Proand92.4%forGPT-5.2Thinking(withnotoolsenabledandatmaximumreasoninge?ort),suggestingahigherbaselineforgraduate-levelscienti?cquestionansweringacrossmanyscienti?cdisciplines.Inparallel,automatingtheunspokendrudgeryofresearch–referencehunting,bibliographyassembly,androutineadministrativereporting–freesscientists’scarceattentionforhigher-valuework.Pairedwithinformationretrievalandexecutabletoolsthatenablecheckablecalculationsandstepwisevalidation,thesemodelsarebecomingreliablework?oworchestratorsforscienti?cplanning,analysis,anddocumentation,teeingupaccelerationacrossmany?elds.
Physics
Lastmonth,OpenAIannouncedamemorandumofunderstandingwiththeUSDepartmentofEnergytosupportcollaborationonAIandadvancedcomputinginordertoadvanceDOEinitiativesincludingtheGenesisMission,withapplicationsinenergysuchasfusionresearch.
Inphysics,LLMsarebeingusedacrossmajorfacilities,includingmany
USnationallabs
,asaunifyinglayerovercomplexoperationsstacksandinternalknowledgebases,acceleratinganalysisanddecision-makingunderstrictconstraintsalongsideexistingmachine-learningtoolsforsimulation,real-timedatareduction,andexperimentalcontrol.LLMscandigestshiftlogsandalerts,answerquestionsfrominternaldocumentation,andhelprouteworktotherightanalysis,simulation,orcontroltool,allunderstrictsafety,timing,andresourceconstraints.Thisaugmentsalongertrackrecordofspecializedmachinelearninginphysics:neural“surrogate”modelsthatapproximateequation-governedsimulationswhenfullcomputationistooslow,real-time?lteringandreconstructioninparticledetectorsthatseetensofmillionsofcollisionspersecond,andmachine-learningsupportedcontrollersthatcoordinatethemanyelectromagnetsintokamakfusionexperimentswhilestayingwithinhardwareandsafetylimits.
Near-termgainsinphysicsarelikelytoconcentrateinhigh-throughput,decision-heavysettingswhereexpertattentionandturnaroundtimearethebottlenecks.AIassistantsthatcanreferencealab’sinternaldocumentationandrunautomatedcheckscanturnliveexperimentalerts,notes,andlog?lesintoprioritizednext-stepresearchplansandrepeatableanalyticoutputs,suchasnotebooks,scripts,andreports.
11
Intheoreticalphysics,LLMswillcontinuetodelivervalueasthoughtpartnerscompressingresearchers’cognitiveoverheadwhileexpandingthespaceofexploration.Whenacomplexcalculationhitsaroadblock,LLMscansurfacewaystoreframetheproblem,suggestintermediatesteps,andprovidequickconsistencychecksthatreducetimethatphysicistsspendbeing“stuck.”Sometimesthisproducesinsightslikeamissingcondition,acleanerformulation,orausefulrelationshipbetweenexpressionsthatcanbecomeameaningfulingredientofapaper.Thelargermultipliermaycomefromsynthesizingresearchatscale,wheremodelsscantheliteratureacrosspapersandsub?eldstosurfacenewconnectionsautomatically.
Chemistry
ChatGPT’sapplicationsinchemistryhavemovedpastone-shotquestionansweringtowardmulti-stepwork?owsthattranslatebetweennaturallanguageandchemicalrepresentations,andrelyonexternaltoolsforveri?cationandretrieval.
ChemBench
,publishedinNatureChemistryin2025,curatedmorethan2,700expert-writtenquestionsandfoundthatleadingmodelsoutperformedhumanchemistsonaverage,whilestillstrugglingonsomebasictasksandproducingovercon?denterrors.
LeadingAIsystemsinchemistryincreasinglyuseahybridwork?ow:ageneral-purposeLLMhelpstoplanmulti-stepworkandcoordinatetools,whilespecializedmodelsthatunderstandmolecularstructurehandlepredictionandsimulation.Akeyexampleisstate-of-the-artgraphneuralnetworks(GNNs):thesemodelstreatamoleculelikeanetwork,withatomsasnodesandbondsasconnections,sothesystemcanlearnhowlocalchangesa?ectthewholestructure.NewerGNNsaredesignedsotheirpredictionsremainconsistentwhenamoleculeisrotatedorshiftedin3Dspace,whichmakesthemwellsuitedforlearningtheenergyrulesneededtorunfast,accuratemolecularsimulations.Asmoleculargraphmodelsscalewithmoredataandpretraining,resultscontinuetoimprove,buttougherbenchmarksforchemicalreasoning,includingorganicreactionmechanismtaskssuchas
oMeBench
,underscoretheneedforhumanoversight.
12
Biology
ChatGPT’sapplicationsinbiologyincreasinglyextendintomulti-stepwork?owsthatcombinenatural-languagequestionswithstructuredscienti?csourcessuchasgenomicsdatabases,proteinrepositories,andthebiomedicalliterature,oftenwithcodeandretrievaltoolsusedfortraceabilityandveri?cation.
GeneTuring
,a2025genomicsbenchmarkinBrie?ngsinBioinformatics,curated1,600questionsacross16tasktypesandmanuallyevaluated48,000answersfrommultiplemodelcon?gurations.Thestrongestresultscamefromatool-augmentedsetupthatpairedageneral-purposemodelwithdirectaccesstoNationalCenterforBiotechnologyInformation(NCBI)APIs,reinforcingthatreliabilityimproveswhenlanguagemodelsareconnectedtoauthoritativereferencedataandcanshowtheirwork.
Aswithchemistry,state-of-the-artAI-enabledresearchinbiologyreliesonhybridstacks:general-purposelanguagemodelshelpplanandcoordinateanalysis,whilespecializedfoundationmodelstrainedonbiologicalsequencesandstructurespowerpredictionanddesign.Inproteinscience,
AlphaFold3
representsasteptowarduni?edbiomolecularmodelingbypredictingthejoint3Dstructureofcomplexesthatcanincludeproteins,DNAandRNA,andsmallmoleculeswithinadi?usion-basedarchitecture.
13
14
Usecasepro?les
ErnestRyu-Mathematician
ErnestRyupickedupChatGPToutofcuriosityin2023,andsawitadvanceuntilitcouldgenerateapublishableresultlastyear.Ryu’sacademicworkhasfocusedonoptimization:themathbehinde?cient,reliablealgorithmsthatsupportmoderneconomies,fromplanninglogisticstokeepingaircraftwingsstable.
Whenlargelanguagemodelsweresurginginpopularityin2023,Ryubeganhis?rstexperiments:couldamodeltranslatereal-world“wordproblems”intopreciseoptimizationmodels,includingallthehiddenconstraints,andthenhandthemtoasolver?Schedulingabaseballseason,forexample,requireshardconstraints(e.g.noteamplaystwogamesatthesametime)andsofterones(e.g.travelrestdaysthatcanbeviolatedifnecessary).Thatearlymodelstruggledwiththecarefulconstrainthandlingthisworkdemands,sometimesomittingconstraintsandfailingonlarger,realisticschedules.
Thein?ectionpointcamelastyear,afterthearrivalofreasoningmodelsandOpenAI’swinninggoldattheInternationalMathematicalOlympiad.ThesameclassofschedulingproblemsRyuhadtestedbeforewerereliablysolved.ThatsuccessledRyutoapplyLLMstoeverydaymathematicalwork:whilewritinglectures,RyubeganaskingChatGPTforproofsofresultsheknewweretruebutdidn’thavetopofmind.
Finally,hetrieditonresearch.RyuchoseaproblemrelatedtoNesterovacceleration,awell-knowntechniqueforspeedingupoptimization,andpickedaversionoftheproblemthatwasopenlongenoughthatothershadattemptedit,yetsimpleenoughthatashortproofmightexist.Forthreeconsecutiveevenings,afterhissonwenttobed,heworkedfrom8pmtomidnight,andbythethirdnighthehadguidedAItothepointwhereitcrackedtheproblem.
Theircollaborationlookedlikerealresearch.Themodelproducedaninitialproofwithacalculationmistake,soRyubegantoiterate:hecorrectedtheerror,preservedthecorrectintermediatestepsinagrowingprompt,abandoneddeadends,andpushedthemodelintootherapproaches.Ryudescribesthisasmazerunning,whereyouturndowncorridorsandopendoors,sometimesonlyto?ndthemempty,whilekeepingamentalmapofwhatfailsandwhatseemspromising.ChatGPThelpedRyuacceleratehowfastheranthemazeby3xto10x.
15
Onthethirdnight,themodelmadeasmallbutmeaningfulleapthat“l(fā)ookeddi?erent”enoughtounlocktheproof.Ryusaidhe“morethantriple-checked”theargument,thenhadastudentverifyit,beforeheshareditpubliclytoanoptimizationcommunitythatreactedwithsurpriseandexcitement.Fromthere,thecontinuous-timeresultwastranslatedintothediscrete-timealgorithmstatementwithasingleprompt,leavingashort,onenovelcorethatmetthestandardforapublishableadvance.
Sincethen,RyuhasjoinedOpenAI’ssyntheticdatateam,wherehiscorefocusisimprovingthemodel’smathematicalcapability.
AlexLupsasca-Physicist
AlexLupsascacametoAIthewaymanyphysicistscometoboldclaims:withpoliteskepticismandabunchoftests.Inearly2025,hetriedChatGPT,andhefounditusefulfortheroutineadministrativetasksthatregularlypopupinacademia.Buthedidnotseeitasatoolforthehardpartofthejob:turningthelawsofphysicsintoconcreteandveri?ablepredictions.
Acommonrealityofacademicpublishing,Lupsascasays,isthataresearchprojectmayoftenresultinadraftequationsandroughconnectivetissue,andaprofessor’sworkbecomesthatofacopyeditor,especiallywhencollaboratorsarewritingoutsidetheir?rstlanguage.ChatGPTcantakearough
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥物管理與給藥途徑
- 口腔模擬試題含參考答案
- 手術(shù)室試題及答案大全
- 新安全生產(chǎn)法考試試題含答案
- 醫(yī)療國(guó)企考試題庫(kù)及答案
- 醫(yī)德醫(yī)風(fēng)培訓(xùn)試題與答案
- 食品企業(yè)三標(biāo)培訓(xùn)試題附答案
- 東安縣招聘協(xié)管員考試真題及答案
- N2級(jí)護(hù)理人員考核測(cè)試題及答案
- 2025年鐵路一級(jí)建造師考試試題及答案
- 湖南省岳陽(yáng)市平江縣2024-2025學(xué)年高二上學(xué)期期末考試語(yǔ)文試題(解析版)
- 房屋租賃用于經(jīng)營(yíng)合同(2025版)
- DB5101∕T 161-2023 公園城市鄉(xiāng)村綠化景觀營(yíng)建指南
- 2024-2025學(xué)年湖北省武漢市江漢區(qū)七年級(jí)(下)期末數(shù)學(xué)試卷
- 重慶市2025年高考真題化學(xué)試卷(含答案)
- 工地材料管理辦法措施
- 感術(shù)行動(dòng)培訓(xùn)課件
- 建筑工程生產(chǎn)管理培訓(xùn)
- 膿毒癥集束化治療更新
- 臥床老人口腔護(hù)理規(guī)范
- JG/T 154-2003電動(dòng)伸縮圍墻大門(mén)
評(píng)論
0/150
提交評(píng)論