版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省德惠市九校2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在棱長為1的正方體中,點(diǎn)B到直線的距離為()A. B.C. D.2.已知函數(shù),則()A.0 B.1C.2 D.3.已知是雙曲線的左焦點(diǎn),為右頂點(diǎn),是雙曲線上的點(diǎn),軸,若,則雙曲線的離心率為()A. B.C. D.4.閱讀如圖所示程序框圖,運(yùn)行相應(yīng)的程序,輸出的S的值等于()A.2 B.6C.14 D.305.已知四棱錐,底面為平行四邊形,分別為,上的點(diǎn),,設(shè),則向量用為基底表示為()A. B.C. D.6.若直線與直線垂直,則a的值為()A.2 B.1C. D.7.經(jīng)過點(diǎn)且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.8.已知橢圓的離心率,為橢圓上的一個(gè)動(dòng)點(diǎn),若定點(diǎn),則的最大值為A. B.C. D.9.橢圓上的一點(diǎn)M到其左焦點(diǎn)的距離為2,N是的中點(diǎn),則等于()A.1 B.2C.4 D.810.過點(diǎn)且與直線平行的直線方程是()A. B.C. D.11.圓()上點(diǎn)到直線的最小距離為1,則A.4 B.3C.2 D.112.已知關(guān)于的不等式的解集是,則的值是()A. B.5C. D.7二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過兩點(diǎn)的直線的傾斜角為,則___________.14.設(shè)直線,直線,若,則_______.15.在一平面直角坐標(biāo)系中,已知,現(xiàn)沿x軸將坐標(biāo)平面折成60°的二面角,則折疊后A,B兩點(diǎn)間的距離為___________.16.記為等差數(shù)列的前n項(xiàng)和.若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.18.(12分)如圖,在棱長為的正方體中,為中點(diǎn)(1)求二面角的大??;(2)探究線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說明理由19.(12分)在2016珠海航展志愿服務(wù)開始前,團(tuán)珠海市委調(diào)查了北京師范大學(xué)珠海分校某班50名志愿者參加志愿服務(wù)禮儀培訓(xùn)和賽會(huì)應(yīng)急救援培訓(xùn)的情況,數(shù)據(jù)如下表:單位:人參加志愿服務(wù)禮儀培訓(xùn)未參加志愿服務(wù)禮儀培訓(xùn)參加賽會(huì)應(yīng)急救援培訓(xùn)88未參加賽會(huì)應(yīng)急救援培訓(xùn)430(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一個(gè)培訓(xùn)的概率;(2)在既參加志愿服務(wù)禮儀培訓(xùn)又參加賽會(huì)應(yīng)急救援培訓(xùn)的8名同學(xué)中,有5名男同學(xué)A,A,A,A,A名女同學(xué)B,B,B現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A被選中且B未被選中的概率.20.(12分)已知為坐標(biāo)原點(diǎn),橢圓:的左、右焦點(diǎn)分別為,,右頂點(diǎn)為,上頂點(diǎn)為,若,,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為求橢圓的標(biāo)準(zhǔn)方程;過該橢圓的右焦點(diǎn)作兩條互相垂直的弦與,求的取值范圍21.(12分)2021年7月25日,在東京奧運(yùn)會(huì)自行車公路賽中,奧地利數(shù)學(xué)女博士安娜·基秣崔天以3小時(shí)52分45秒的成績獲得冠軍,震驚了世界!廣大網(wǎng)友驚呼“學(xué)好數(shù)理化,走遍天下都不怕”.某市對(duì)中學(xué)生的體能測試成績與數(shù)學(xué)測試成績進(jìn)行分析,并從中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):體能一般體能優(yōu)秀合計(jì)數(shù)學(xué)一般5050100數(shù)學(xué)優(yōu)秀4060100合計(jì)90110200(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“體能優(yōu)秀”還是“體能一般”與數(shù)學(xué)成績有關(guān)?(結(jié)果精確到小數(shù)點(diǎn)后兩位)(2)①現(xiàn)從抽取的數(shù)學(xué)優(yōu)秀的人中,按“體能優(yōu)秀”與“體能一般”這兩類進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人,求其中至少有2人是“體能優(yōu)秀”的概率;②將頻率視為概率,以樣本估計(jì)總體,從該市中學(xué)生中隨機(jī)抽取10人參加座談會(huì),記其中“體能優(yōu)秀”的人數(shù)為X,求X的數(shù)學(xué)期望和方差參考公式:,其中參考數(shù)據(jù):0.150.100.050.250.0102.0722.7063.8415.0246.63522.(10分)在平面直角坐標(biāo)系中,點(diǎn),直線軸,垂足為H,,圓N過點(diǎn)O,與l的公共點(diǎn)的軌跡為(1)求的方程;(2)過M的直線與交于A,B兩點(diǎn),若,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】以為坐標(biāo)原點(diǎn),以為單位正交基底,建立空間直角坐標(biāo)系,取,,利用向量法,根據(jù)公式即可求出答案.【詳解】以為坐標(biāo)原點(diǎn),以為單位正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,取,,則,,則點(diǎn)B到直線AC1的距離為.故選:A2、C【解析】對(duì)函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點(diǎn)睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.3、C【解析】根據(jù)條件可得與,進(jìn)而可得,,的關(guān)系,可得解.【詳解】由已知得,設(shè)點(diǎn),由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.4、C【解析】模擬運(yùn)行程序,直到得出輸出的S的值.【詳解】運(yùn)行程序框圖,,,;,,;,,;,輸出.故選:C5、D【解析】通過尋找封閉的三角形,將相關(guān)向量一步步用基底表示即可.【詳解】.故選:D6、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A7、C【解析】共漸近線的雙曲線方程,設(shè),把點(diǎn)代入方程解得參數(shù)即可.【詳解】設(shè),把點(diǎn)代入方程解得參數(shù),所以化簡得方程故選:C.8、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設(shè)橢圓上點(diǎn)的坐標(biāo)為,則,故:,當(dāng)時(shí),.本題選擇C選項(xiàng).【點(diǎn)睛】本題主要考查橢圓方程問題,橢圓中的最值問題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.9、C【解析】先利用橢圓定義得到,再利用中位線定理得即可.【詳解】由橢圓方程,得,由橢圓定義得,又,,又為的中點(diǎn),為的中點(diǎn),線段為中位線,∴.故選:C.10、A【解析】由題意設(shè)直線方程為,根據(jù)點(diǎn)在直線上求參數(shù)即可得方程.【詳解】由題設(shè),令直線方程為,所以,可得.所以直線方程為.故選:A.11、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項(xiàng)是正確的.【點(diǎn)睛】判斷直線與圓的位置關(guān)系的常見方法:(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動(dòng)直線問題12、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因?yàn)殛P(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由兩點(diǎn)間的斜率公式及直線斜率的定義即可求解.【詳解】解:因?yàn)檫^兩點(diǎn)的直線的傾斜角為,所以,解得,故答案為:2.14、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:15、【解析】平面直角坐標(biāo)系中,沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點(diǎn),通過用向量的數(shù)量積轉(zhuǎn)化求解距離即可.【詳解】在直角坐標(biāo)系中,已知,現(xiàn)沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點(diǎn),所以,所以,所以,故答案為:16、5【解析】根據(jù)等差數(shù)列前項(xiàng)和的公式及等差數(shù)列的性質(zhì)即可得出答案.【詳解】解:,所以.故答案為:5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)當(dāng)時(shí),,求出,可得答案;(2)設(shè),,,,,設(shè),求出利用單調(diào)性可得答案.【小問1詳解】當(dāng)時(shí),,則,所以單調(diào)遞增,又,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以.【小問2詳解】設(shè),若,則,若,則,設(shè),則,所以單調(diào)遞增,又,當(dāng)時(shí),,上單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,所以,綜上,恒成立.【點(diǎn)睛】本題考查了求函數(shù)值域或最值的問題,一般都需要通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值來處理,特別的要根據(jù)所求問題,適時(shí)構(gòu)造恰當(dāng)?shù)暮瘮?shù),再利用所構(gòu)造函數(shù)的單調(diào)性、最值解決問題是常用方法,考查了學(xué)生分析問題、解決問題的能力.18、(1)(2)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)【解析】(1)建立空間直角坐標(biāo)系,分別寫出點(diǎn)的坐標(biāo),求出兩個(gè)平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標(biāo),利用線面平行的向量法代入公式計(jì)算即可.【小問1詳解】如下圖所示,以為原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因?yàn)?,,,平面,平面,平面,所以平面,所以為平面的一個(gè)法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設(shè)在線段上存在點(diǎn),使得平面,設(shè),,,因?yàn)槠矫妫?,即所以,即解得所以在線段上存在點(diǎn),使得平面,此時(shí)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)19、(1);(2).【解析】(1)根據(jù)表中數(shù)據(jù)知未參加志愿服務(wù)禮儀培訓(xùn)又未參加賽會(huì)應(yīng)急救援培訓(xùn)的有30人,故至少參加上述一個(gè)培訓(xùn)的共有人.從而求得概率;(2)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,列出其一切可能的結(jié)果,從而求得被選中且未被選中的概率.【詳解】解:由調(diào)查數(shù)據(jù)可知,既未參加志愿服務(wù)禮儀培訓(xùn)又未參加賽會(huì)應(yīng)急救援培訓(xùn)的有30人,故至少參加上述一個(gè)培訓(xùn)的共有人.從該班隨機(jī)選1名同學(xué),該同學(xué)至少參加上述一個(gè)培訓(xùn)的概率為;從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,其一切可能的結(jié)果組成的基本事件有:,,,共15個(gè),根據(jù)題意,這些基本事件的出現(xiàn)是等可能的,事件“被選中且未被選中”所包含的基本事件有:,共2個(gè),被選中且未被選中的概率為.20、(1)(2)【解析】根據(jù),,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為.列出關(guān)于、、的方程組,求出、的值,即可得出橢圓的方程;對(duì)直線和分兩種情況討論:一種是兩條直線與坐標(biāo)軸垂直,可求出兩條弦長度之和;二是當(dāng)兩條直線斜率都存在時(shí),設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,利用弦長公式可計(jì)算出的長度的表達(dá)式,然后利用相應(yīng)的代換可求出的長度表達(dá)式,將兩線段長度表達(dá)式相加,利用函數(shù)思想可求出兩條弦長的取值范圍最后將兩種情況的取值范圍進(jìn)行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標(biāo)準(zhǔn)方程為;當(dāng)兩條直線中有一條斜率為0時(shí),另一條直線的斜率不存在,由題意易得;當(dāng)兩條直線斜率都存在且不為0時(shí),由知,設(shè)、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設(shè),,所以,,所以,,則綜合可知,的取值范圍是【點(diǎn)睛】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中范圍問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.21、(1)不能,理由見解析;(2)①,②,【解析】(1)運(yùn)用公式求出,比較得出結(jié)論.(2)①先用分層抽樣得到“體能優(yōu)秀”與“體能一般”的人數(shù),再利用公式計(jì)算至少有2人是“體能優(yōu)秀”的概率.②根據(jù)已知條件知此分布列為二項(xiàng)分布,故利用數(shù)學(xué)期望和方差的公式即可求出答案【小問1詳解】由表格的數(shù)據(jù)可得,,故不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“體能優(yōu)秀”還是“體能一般”與數(shù)學(xué)成績有關(guān).【小問2詳解】①在數(shù)學(xué)優(yōu)秀的人群中,“體能優(yōu)秀”與“體能一般”的比例為“體能一般”的人數(shù)為,“體能優(yōu)秀”的人數(shù)為故再從這10人中隨機(jī)選出4人,其中至少有2人是“體能優(yōu)秀”的概率為.②由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026云南玉溪宸才人力資源咨詢管理有限公司招聘消防監(jiān)控值班員考試參考題庫及答案解析
- 2025年航空安保訓(xùn)練理論筆試及答案
- 2025年報(bào)名教資的筆試及答案
- 2025年事業(yè)單位無準(zhǔn)備考試及答案
- 2026年房地產(chǎn)市場動(dòng)態(tài)分析與未來趨勢(shì)
- 2025年西安退伍軍人事業(yè)編考試及答案
- 2026山東女子學(xué)院幼教集團(tuán)濟(jì)南市槐蔭區(qū)弘信幼兒園招聘筆試備考試題及答案解析
- 2025年貴州省都勻市人事考試及答案
- 2026年哈爾濱五常市廣源農(nóng)林綜合開發(fā)有限公司招聘工作人員5人筆試備考題庫及答案解析
- 2025年產(chǎn)教融合辦筆試及答案
- 免疫治療相關(guān)甲狀腺功能亢進(jìn)的分級(jí)
- 浙江省杭州市拱墅區(qū)2024-2025學(xué)年四年級(jí)上冊(cè)期末考試數(shù)學(xué)試卷(含答案)
- 2024-2025學(xué)年七上期末數(shù)學(xué)試卷(原卷版)
- 2025-2026學(xué)年蘇教版五年級(jí)上冊(cè)數(shù)學(xué)期末必考題檢測卷(含答案)
- 新《增值稅法實(shí)施條例》逐條解讀課件
- 2026年廣西職教高考5套語文模擬試卷試題及逐題答案解釋和5套試題的綜合分析報(bào)告
- 福建省福州市2024-2025學(xué)年高二上學(xué)期期末質(zhì)量檢測化學(xué)試卷(含答案)
- 泌尿系統(tǒng)疾病診治
- 2025-2026學(xué)年大象版四年級(jí)上冊(cè)科學(xué)全冊(cè)重點(diǎn)知識(shí)點(diǎn)
- 治療失眠癥的認(rèn)知行為療法訓(xùn)練
- 太原師范學(xué)院簡介
評(píng)論
0/150
提交評(píng)論