版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆廣東省惠州市實驗中學高二數學第一學期期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.古希臘數學家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,著作中有這樣一個命題:平面內與兩定點距離的比為常數k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關系是()A.相交 B.相離C.內切 D.外切2.設,,若,其中是自然對數底,則()A. B.C. D.3.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.4.已知拋物線的焦點為F,過點F作傾斜角為的直線l與拋物線交于兩點,則POQ(O為坐標原點)的面積S等于()A. B.C. D.5.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.6.美學四大構件是:史詩、音樂、造型(繪畫、建筑等)和數學.素描是學習繪畫的必要一步,它包括明暗素描和結構素描,而學習幾何體結構素描是學習素描最重要的一步.某同學在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.7.已知是橢圓兩個焦點,P在橢圓上,,且當時,的面積最大,則橢圓的標準方程為()A. B.C. D.8.在數列中,,,則()A.985 B.1035C.2020 D.20709.“,”的否定是A., B.,C., D.,10.中,,,分別為三個內角,,的對邊,若,,,則()A. B.C. D.11.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的公差,等比數列的公比q為正整數,若,,且是正整數,則______14.已知正四面體ABCD中,E,F分別是線段BC,AD的中點,點G是線段CD上靠近D的四等分點,則直線EF與AG所成角的余弦值為______15.如圖,已知,分別是橢圓的左、右焦點,現以為圓心作一個圓恰好經過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為_________16.若,滿足約束條件,則的最小值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標準方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程18.(12分)已知拋物線的焦點為,點為坐標原點,直線過定點(其中,)與拋物線相交于兩點(點位于第一象限.(1)當時,求證:;(2)如圖,連接并延長交拋物線于兩點,,設和的面積分別為和,則是否為定值?若是,求出其值;若不是,請說明理由.19.(12分)在平面直角坐標系中,圓C:,直線l:(1)若直線l與圓C相切于點N,求切點N的坐標;(2)若,直線l上有且僅有一點A滿足:過點A作圓C的兩條切線AP、AQ,切點分別為P,Q,且使得四邊形APCQ為正方形,求m的值20.(12分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離21.(12分)已知函數,其中.(1)當時,求函數的單調性;(2)若對,不等式在上恒成立,求的取值范圍.22.(10分)某初中學校響應“雙減政策”,積極探索減負增質舉措,優(yōu)化作業(yè)布置,減少家庭作業(yè)時間.現為調查學生的家庭作業(yè)時間,隨機抽取了名學生,記錄他們每天完成家庭作業(yè)的時間(單位:分鐘),將其分為,,,,,六組,其頻率分布直方圖如下圖:(1)求的值,并估計這名學生完成家庭作業(yè)時間的中位數(中位數結果保留一位小數);(2)現用分層抽樣的方法從第三組和第五組中隨機抽取名學生進行“雙減政策”情況訪談,再從訪談的學生中選取名學生進行成績跟蹤,求被選作成績跟蹤的名學生中,第三組和第五組各有名的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關系,即可判斷兩圓的位置關系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A2、A【解析】利用函數的單調性可得正確的選項.【詳解】令,因為均為,故為上的增函數,由可得,故,故選:A.3、B【解析】根據得到三角形為等腰三角形,然后結合雙曲線的定義得到,設,進而作,得出,由此求出結果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B4、A【解析】由拋物線的方程可得焦點的坐標,由題意設直線的方程,與拋物線的方程,聯立求出兩根之和及兩根之積,進而求出,的縱坐標之差的絕對值,代入三角形的面積公式求出面積【詳解】拋物線的焦點為,,由題意可得直線的方程為,設,,,,聯立,整理可得:,則,,所以,所以,故選:A5、B【解析】根據給定條件建立空間直角坐標系,令,用表示出點E,F坐標,再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標系,則,,設,則,設,有,線段EF長最短,必滿足,則有,解得,即,因此,,當且僅當時取“=”,所以線段EF長的最小值為.故選:B6、A【解析】設圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎題.7、A【解析】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,即可解出【詳解】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標準方程為故選:A8、A【解析】根據累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A9、D【解析】通過命題的否定的形式進行判斷【詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【點睛】本題考查全稱命題的否定,屬基礎題.10、C【解析】利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:C.11、A【解析】根據平面向量垂直的性質,結合平面向量數量積的坐標表示公式、充分性、必要性的定義進行求解判斷即可.詳解】當時,有,顯然由,但是由不一定能推出,故選:A12、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當且僅當時取等號.【詳解】根據橢圓的定義可知,,即,因為,,所以,當且僅當,時等號成立.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知等差、等比數列以及,,是正整數,可得,結合q為正整數,進而求.【詳解】由,,令,其中m為正整數,有,又為正整數,所以當時,解得,當時,解得不是正整數,故答案為:14、【解析】建立空間直角坐標系,令正四面體的棱長為,即可求出點的坐標,從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標系,令正四面體的棱長為,則,所以,所以,所以,,,,,設,因為,所以,所以,所以,,設直線與所成角為,則故答案為:15、##【解析】根據給定條件探求出橢圓長軸長與其焦距的關系即可計算作答.【詳解】設橢圓長軸長為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:16、【解析】作出線性約束條件的可行域,再利用截距的幾何意義求最小值;【詳解】約束條件的可行域,如圖所示:目標函數在點取得最小值,即.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據橢圓的定義即可判斷并求解;(2)根據點差法即可求解中點弦斜率和中點弦方程.【小問1詳解】設,,E(x,y),∵,,且,點的軌跡是以,為焦點,長軸長為4的橢圓設橢圓C的方程為,記,則,,,,,曲線的標準方程為【小問2詳解】根據橢圓對稱性可知直線l斜率存在,設,則,由①-②得,,∴l(xiāng):,即.18、(1)證明見解析;(2)是定值,定值為.【解析】(1)設直線方程為,聯立直線與拋物線的方程得到韋達定理,再利用韋達定理求出,即得證;(2)設直線方程為,聯立直線與拋物線的方程得到韋達定理,再求出,,即得解.【詳解】(1)設直線方程為,聯立直線與拋物線的方程,消去,得,所以.所以即.(2)設直線方程為,聯立直線與拋物線的方程,消去,得,故.設的方程為,聯立直線與拋物線的方程,消去得,從而,則,同理可得,,即定值.19、(1)或(2)3.【解析】(1)設切點坐標,由切點和圓心連線與切線垂直以及切點在圓上建立關系式,求解切點坐標即可;(2)由圓的方程可得圓心坐標及半徑,由APCQ為正方形,可得|AC|=可得圓心到直線的距離為,可得m的值【小問1詳解】解:設切點為,則有,解得:或x0=-2+1y0=-2,所以切點的坐標為或【小問2詳解】解:圓C:的圓心(1,0),半徑r=2,設,由題意可得,由四邊形APCQ為正方形,可得|AC|=,即,由題意直線l⊥AC,圓C:(x﹣1)2+y2=4,則圓心(1,0)到直線的距離,可得,m>0,解得m=3.20、(1);(2)【解析】(1)由直線一般方程的垂直公式,即得解;(2)由直線一般方程的平行公式,求得,再由平行線的距離公式,即得解.【小問1詳解】∵兩直線垂直,∴,解得【小問2詳解】∵兩直線平行,∴,解得或1,經過驗證時兩條直線重合,舍去.∴可得:直線:,:∴兩直線間的距離21、(1)的單調遞增區(qū)間為,,單調遞減區(qū)間為,(2)【解析】(1)求導可得,分析正負即得解;(2)轉化在上恒成立為,分析函數單調性,轉化為f(1)≤1f(-1)≤1,求解即可【小問1詳解】當時,令,解得,,當變化時,,的變化情況如下表:↘極小值↗極大值↘極小值↗所以的單調遞增區(qū)間為,,單調遞減區(qū)間為,【小問2詳解】由條件可知,從而恒成立當時,;當時,因此函數在上的最大值是與兩者中的較大者為使對任意的,不等式在上恒成立,當且僅當f(1)≤1f(-1)≤1即在上恒成立所以,因此滿足條件的的取值范圍是22、(1);這名學生完成家庭作業(yè)時間的中位數約為分鐘(2)【解析】(1)由頻率分布直方圖頻率之和為,建立方程求解即可;設中位數為,利用頻率分布直方圖中位數定義列出方程即可求解;(2)頻率分布直方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CCAA - 2018年03月建筑施工領域專業(yè)答案及解析 - 詳解版(56題)
- 中學宿舍管理規(guī)則制度
- 養(yǎng)老院醫(yī)療廢物處理制度
- 養(yǎng)老院個性化服務制度
- 企業(yè)人力資源配置制度
- CCAA - 2024年03月認證基礎 認通基答案及解析 - 詳解版(62題)
- 統(tǒng)編版(2024)七年級下冊語文第六單元(22~25課)教案
- 老年終末期尿失禁皮膚護理的循證個性化護理方案
- 兒童肺炎支原體肺炎診療指南2026
- 老年糖尿病足患者的臨床特點與管理策略
- 江蘇省鹽城市大豐區(qū)四校聯考2025-2026學年七年級上學期12月月考歷史試卷(含答案)
- 事業(yè)編退休報告申請書
- 原發(fā)性骨髓纖維化2026
- 子宮內膜癌(本科)+
- 軟基施工方案
- 鋼結構清包工合同
- 安全技術勞動保護措施管理規(guī)定
- 新建加油站可行性研究報告6118933
- 論高級管理人員應具備的財務知識
- GB/T 7354-2003局部放電測量
- GB/T 1690-1992硫化橡膠耐液體試驗方法
評論
0/150
提交評論