版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆杜爾伯特蒙古族自治縣中考沖刺卷數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在⊙O中,直徑AB⊥弦CD,垂足為M,則下列結(jié)論一定正確的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD2.的一個有理化因式是()A. B. C. D.3.2016年底安徽省已有13個市邁入“高鐵時代”,現(xiàn)正在建設(shè)的“合安高鐵”項目,計劃總投資334億元人民幣.把334億用科學(xué)記數(shù)法可表示為()A.0.334×1011B.3.34×10104.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤5.如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.36.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+37.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°8.6的絕對值是()A.6 B.﹣6 C. D.9.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°10.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.1211.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.12.已知:如圖,在平面直角坐標(biāo)系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點C和點D,則k的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點B順時針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____.14.如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標(biāo)分別為(3,2),(-1,-1),則兩個正方形的位似中心的坐標(biāo)是_________.15.如圖,在平行四邊形ABCD中,E為邊BC上一點,AC與DE相交于點F,若CE=2EB,S△AFD=9,則S△EFC等于_____.16.如圖是一位同學(xué)設(shè)計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.17.=_____.18.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當(dāng)BP與CP之和最小時,P點坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標(biāo);若不存在,說明理由.20.(6分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.21.(6分)如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負(fù)方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當(dāng)?shù)谝淮闻c外切時,求平移的時間.22.(8分)一輛高鐵與一輛動車組列車在長為1320千米的京滬高速鐵路上運行,已知高鐵列車比動車組列車平均速度每小時快99千米,且高鐵列車比動車組列車全程運行時間少3小時,求這輛高鐵列車全程運行的時間和平均速度.23.(8分)如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;在圖2中畫出線段AB的垂直平分線.24.(10分)風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對風(fēng)電塔桿進行了測量,甲同學(xué)站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)25.(10分)計算:.26.(12分)已知四邊形ABCD為正方形,E是BC的中點,連接AE,過點A作∠AFD,使∠AFD=2∠EAB,AF交CD于點F,如圖①,易證:AF=CD+CF.(1)如圖②,當(dāng)四邊形ABCD為矩形時,其他條件不變,線段AF,CD,CF之間有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并給予證明;(2)如圖③,當(dāng)四邊形ABCD為平行四邊形時,其他條件不變,線段AF,CD,CF之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.圖①圖②圖③27.(12分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)垂徑定理判斷即可.【詳解】連接DA.∵直徑AB⊥弦CD,垂足為M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故選D.本題考查的是垂徑定理和圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關(guān)鍵.2、B【解析】
找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關(guān)鍵.3、B【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).解:334億=3.34×1010“點睛”此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強,難度較大,仔細(xì)分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.5、C【解析】
由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無法證明,故錯誤.∵BP=1,AB=3,∴∴故③正確,故選C.考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強,對學(xué)生要求較高.6、D【解析】
直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關(guān)鍵.7、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關(guān)矩形折疊的問題,熟悉“矩形的四個內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.8、A【解析】試題分析:1是正數(shù),絕對值是它本身1.故選A.考點:絕對值.9、C【解析】
根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.10、C【解析】
先根據(jù)勾股定理求出BC得長,再根據(jù)銳角三角函數(shù)正弦的定義解答即可.【詳解】如圖,根據(jù)勾股定理得,BC=AB∴sinA=BCAB故選C.本題考查了銳角三角函數(shù)的定義及勾股定理,熟知銳角三角函數(shù)正弦的定義是解決問題的關(guān)鍵.11、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標(biāo)系中的圖象情況,而這與“b”的取值無關(guān).12、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設(shè)BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標(biāo)為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(2,3)【解析】
作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點A、B的坐標(biāo)分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點A′的坐標(biāo)為(2,3).故答案為(2,3).此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點的坐標(biāo)的確定.解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.14、(1,0);(﹣5,﹣2).【解析】
本題主要考查位似變換中對應(yīng)點的坐標(biāo)的變化規(guī)律.因而本題應(yīng)分兩種情況討論,一種是當(dāng)E和C是對應(yīng)頂點,G和A是對應(yīng)頂點;另一種是A和E是對應(yīng)頂點,C和G是對應(yīng)頂點.【詳解】∵正方形ABCD和正方形OEFG中A和點F的坐標(biāo)分別為(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)當(dāng)E和C是對應(yīng)頂點,G和A是對應(yīng)頂點時,位似中心就是EC與AG的交點,
設(shè)AG所在直線的解析式為y=kx+b(k≠0),
∴,解得.
∴此函數(shù)的解析式為y=x-1,與EC的交點坐標(biāo)是(1,0);
(2)當(dāng)A和E是對應(yīng)頂點,C和G是對應(yīng)頂點時,位似中心就是AE與CG的交點,
設(shè)AE所在直線的解析式為y=kx+b(k≠0),
,解得,故此一次函數(shù)的解析式為…①,
同理,設(shè)CG所在直線的解析式為y=kx+b(k≠0),
,解得,
故此直線的解析式為…②
聯(lián)立①②得
解得,故AE與CG的交點坐標(biāo)是(-5,-2).
故答案為:(1,0)、(-5,-2).15、1【解析】
由于四邊形ABCD是平行四邊形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它們的相似比為3:2,最后利用相似三角形的性質(zhì)即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它們的相似比為3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=1.故答案為1.此題主要考查了相似三角形的判定與性質(zhì),解題首先利用平行四邊形的構(gòu)造相似三角形的相似條件,然后利用其性質(zhì)即可求解.16、10【解析】
首先證明△ABP∽△CDP,可得=,再代入相應(yīng)數(shù)據(jù)可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用.17、1【解析】分析:第一項根據(jù)非零數(shù)的零次冪等于1計算,第二項根據(jù)算術(shù)平方根的意義化簡,第三項根據(jù)負(fù)整數(shù)指數(shù)冪等于這個數(shù)的正整數(shù)指數(shù)冪的倒數(shù)計算.詳解:原式=1+2﹣2=1.故答案為:1.點睛:本題考查了實數(shù)的運算,熟練掌握零指數(shù)冪、算術(shù)平方根的意義,負(fù)整數(shù)指數(shù)冪的運算法則是解答本題的關(guān)鍵.18、50°【解析】
先根據(jù)三角形外角的性質(zhì)求出∠BEF的度數(shù),再根據(jù)平行線的性質(zhì)得到∠2的度數(shù).【詳解】如圖所示:
∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
∴∠BEF=∠1+∠F=50°,
∵AB∥CD,
∴∠2=∠BEF=50°,
故答案是:50°.考查了平行線的性質(zhì),解題的關(guān)鍵是掌握、運用三角形外角的性質(zhì)(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=x2+2x﹣3;(2)點P坐標(biāo)為(﹣1,﹣2);(3)點M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】
(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對稱軸,從而得出點C關(guān)于對稱軸的對稱點C′坐標(biāo),連接BC′,與對稱軸交點即為所求點P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點D的坐標(biāo),由點O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時,以M、O、D為頂點的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,∴平移后拋物線的二次項系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點C(0,﹣3),則點C關(guān)于直線x=﹣1的對稱點C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點即為所求點P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點P坐標(biāo)為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點M只能在點D上方,∵∠BOD=∠ODM=135°,∴當(dāng)或時,以M、O、D為頂點的三角形△BOD相似,①若,則,解得DM=2,此時點M坐標(biāo)為(﹣1,3);②若,則,解得DM=1,此時點M坐標(biāo)為(﹣1,2);綜上,點M坐標(biāo)為(﹣1,3)或(﹣1,2).本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關(guān)鍵.20、(1)詳見解析;(1)【解析】
(1)連接OE交DF于點H,由切線的性質(zhì)得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據(jù)對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據(jù)∠CBE=∠DOH,從而即可得證;(1)依據(jù)圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數(shù)的定義求出OH的值,進一步求得HE的值,利用銳角三角函數(shù)的定義進一步求得EF的值.【詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴本題主要考查切線的性質(zhì)及直角三角形的性質(zhì)、圓周角定理及三角函數(shù)的應(yīng)用,掌握圓周角定理和切線的性質(zhì)是解題的關(guān)鍵.21、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標(biāo),就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設(shè)⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標(biāo)為.∵在中,,,∴點的坐標(biāo)為.設(shè)直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設(shè)平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關(guān)系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.22、這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.【解析】
設(shè)動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據(jù)時間=路程÷速度結(jié)合高鐵列車比動車組列車全程運行時間少3小時,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.【詳解】設(shè)動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據(jù)題意得:﹣=3,解得:x1=161,x2=﹣264(不合題意,舍去),經(jīng)檢驗,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.本題考查了列分式方程解實際問題的運用及分式方程的解法的運用,解答時根據(jù)條件建立方程是關(guān)鍵,解答時對求出的根必須檢驗,這是解分式方程的必要步驟.23、(1)答案見解析;(2)答案見解析.【解析】試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題.(2)根據(jù)正方形、長方形的性質(zhì)對角線相等且互相平分,即可解決問題.試題解析:(1)如圖所示,∠ABC=45°.(AB、AC是小長方形的對角線).(2)線段AB的垂直平分線如圖所示,點M是長方形AFBE是對角線交點,點N是正方形ABCD的對角線的交點,直線MN就是所求的線段AB的垂直平分線.考點:作圖—應(yīng)用與設(shè)計作圖.24、塔桿CH的高為42米【解析】
作BE⊥DH,知GH=BE、BG=EH=4,設(shè)AH=x,則BE=GH=23+x,由CH=AHtan∠CAH=tan55°?x知CE=CH-EH=tan55°?x-4,根據(jù)BE=DE可得關(guān)于x的方程,解之可得.【詳解】解:如圖,作BE⊥DH于點E,則GH=BE、B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院入住退住規(guī)定制度
- 企業(yè)內(nèi)部溝通協(xié)作制度
- 老年終末期認(rèn)知照護隱私保護策略
- 2026年勞動力趨勢報告(英文版)-Leapsome
- 事業(yè)單位考試綜合應(yīng)用能力內(nèi)蒙古呼和浩特市梳理策略詳解
- 紡織品裁剪工班組協(xié)作能力考核試卷含答案
- 照相器材維修工8S執(zhí)行考核試卷含答案
- 我國上市公司獨立董事獨立性的法律規(guī)制:問題剖析與路徑優(yōu)化
- 我國上市公司擔(dān)保問題的深度剖析與優(yōu)化路徑研究
- 我國上市公司審計委員會特征對盈余質(zhì)量的影響:理論與實證探究
- 管培生培訓(xùn)課件
- 送貨方案模板(3篇)
- 2025年湖南省中考數(shù)學(xué)真題試卷及答案解析
- 學(xué)前教育論文格式模板
- DB32/T 3518-2019西蘭花速凍技術(shù)規(guī)程
- 架空輸電線路建設(shè)關(guān)鍵環(huán)節(jié)的質(zhì)量控制與驗收標(biāo)準(zhǔn)
- 裝修敲打搬運合同協(xié)議書
- 《世界經(jīng)濟史學(xué)》課件
- 重生之我在古代當(dāng)皇帝-高二上學(xué)期自律主題班會課件
- 膀胱切開取石術(shù)護理查房
- GB/T 45355-2025無壓埋地排污、排水用聚乙烯(PE)管道系統(tǒng)
評論
0/150
提交評論