山東德州一中2026屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第1頁
山東德州一中2026屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第2頁
山東德州一中2026屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第3頁
山東德州一中2026屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第4頁
山東德州一中2026屆高二上數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東德州一中2026屆高二上數(shù)學(xué)期末預(yù)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓與圓的位置關(guān)系為()A.內(nèi)切 B.外切C.相交 D.相離2.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時(shí)間為()A.1h B.C. D.3.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取2個(gè)球,那么互斥而不對立的兩個(gè)事件是()A.“至少有1個(gè)白球”和“都是紅球”B.“至少有2個(gè)白球”和“至多有1個(gè)紅球”C.“恰有1個(gè)白球”和“恰有2個(gè)白球”D.“至多有1個(gè)白球”和“都是紅球”4.設(shè),,,…,,,則()A. B.C. D.5.圓()上點(diǎn)到直線的最小距離為1,則A.4 B.3C.2 D.16.已知直線與直線垂直,則實(shí)數(shù)a為()A. B.或C. D.或7.已知橢圓C的焦點(diǎn)為,過F2的直線與C交于A,B兩點(diǎn).若,,則C的方程為A. B.C. D.8.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)A是橢圓短軸的一個(gè)頂點(diǎn),且,則橢圓的離心率()A. B.C. D.9.傾斜角為45°,在y軸上的截距為2022的直線方程是()A. B.C. D.10.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A. B.1C. D.11.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.12.已知命題“若,則”,命題“若,則”,則下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若等比數(shù)列滿足,則的前n項(xiàng)和____________14.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)15.將由2,5,8,11,14,…組成的等差數(shù)列,按順序?qū)懺诰毩?xí)本上,已知每行寫13個(gè),每頁有21行,則5555在第______頁第______行.(用數(shù)字作答)16.如圖:雙曲線的左右焦點(diǎn)分別為,,過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),其中P在右支上,且,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{}的首項(xiàng)=2,(n≥2,),,.(1)證明:{+1}為等比數(shù)列;(2)設(shè)數(shù)列{}的前n項(xiàng)和,求證:.18.(12分)已知橢圓的短軸長是2,且離心率為(1)求橢圓E的方程;(2)已知,若直線與橢圓E相交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,是否存在常數(shù),使恒成立,并說明理由19.(12分)已知橢圓的短軸長為2,左、右焦點(diǎn)分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若A,B為橢圓C上位于x軸同側(cè)的兩點(diǎn),且,共線,求四邊形的面積的最大值20.(12分)已知函數(shù),滿足,已知點(diǎn)是曲線上任意一點(diǎn),曲線在處的切線為.(1)求切線的傾斜角的取值范圍;(2)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.21.(12分)已知,使;不等式對一切恒成立.如果為真命題,為假命題,求實(shí)數(shù)的取值范圍.22.(10分)已知等差數(shù)列的前項(xiàng)和為,滿足,.(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出兩圓的圓心距與半徑之和、半徑之差比較大小即可得出正確答案.【詳解】由可得圓心為,半徑,由可得圓心為,半徑,所以圓心距為,所以兩圓相外切,故選:B.2、A【解析】設(shè)小時(shí)后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時(shí)間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因?yàn)?0min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時(shí)間為1h.故選:A.點(diǎn)睛】3、C【解析】結(jié)合互斥事件與對立事件的概念,對選項(xiàng)逐個(gè)分析可選出答案.【詳解】對于選項(xiàng)A,“至少有1個(gè)白球”和“都是紅球”是對立事件,不符合題意;對于選項(xiàng)B,“至少有2個(gè)白球”表示取出2個(gè)球都是白色的,而“至多有1個(gè)紅球”表示取出的球1個(gè)紅球1個(gè)白球,或者2個(gè)都是白球,二者不是互斥事件,不符合題意;對于選項(xiàng)C,“恰有1個(gè)白球”表示取出2個(gè)球1個(gè)紅球1個(gè)白球,與“恰有2個(gè)白球”是互斥而不對立的兩個(gè)事件,符合題意;對于選項(xiàng)D,“至多有1個(gè)白球”表示取出的2個(gè)球1個(gè)紅球1個(gè)白球,或者2個(gè)都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點(diǎn)睛】本題考查了互斥事件和對立事件的定義的運(yùn)用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.4、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項(xiàng).【詳解】,,,,,……,以此類推,,所以.故選:B5、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項(xiàng)是正確的.【點(diǎn)睛】判斷直線與圓的位置關(guān)系的常見方法:(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動(dòng)直線問題6、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.7、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補(bǔ),,兩式消去,得,解得.所求橢圓方程為,故選B【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實(shí)了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng)8、D【解析】依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得,再根據(jù)離心率公式計(jì)算即可.【詳解】設(shè)橢圓的焦距為,則橢圓的左焦點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,依題意,不妨設(shè)點(diǎn)A的坐標(biāo)為,在中,由余弦定理得:,,,,解得.故選:D.【點(diǎn)睛】本題考查橢圓幾何性質(zhì),在中,利用余弦定理求得是關(guān)鍵,屬于中檔題.9、A【解析】根據(jù)直線斜率與傾斜角的關(guān)系,結(jié)合直線斜截式方程進(jìn)行求解即可.【詳解】因?yàn)橹本€的傾斜角為45°,所以該直線的斜率為,又因?yàn)樵撝本€在y軸上的截距為2022,所以該直線的方程為:,故選:A10、D【解析】,,所以拋物線的焦點(diǎn)到其準(zhǔn)線的距離是,故選D.11、B【解析】基本事件總數(shù),再利用列舉法求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個(gè)數(shù),由此能求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù)之和,基本事件總數(shù),點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個(gè),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B12、D【解析】利用指數(shù)函數(shù)的單調(diào)性可判斷命題的真假,利用特殊值法可判斷命題的真假,結(jié)合復(fù)合命題的真假可判斷出各選項(xiàng)中命題的真假.【詳解】對于命題,由于函數(shù)為上的增函數(shù),當(dāng)時(shí),,命題為真命題;對于命題,若,取,,則,命題為假命題.所以,、、均為假命題,為真命題.故選:D.【點(diǎn)睛】本題考查簡單命題和復(fù)合命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由已知及等比數(shù)列的通項(xiàng)公式得到首項(xiàng)和公比,再利用前n項(xiàng)和公式計(jì)算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:14、【解析】由題設(shè)知:圓錐的軸截面為等邊三角形,進(jìn)而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.15、①.7②.17【解析】首先求出等差數(shù)列的通項(xiàng)公式,即可得到為第項(xiàng),再根據(jù)每行每頁的項(xiàng)數(shù)計(jì)算可得;【詳解】解:由2,5,8,11,14,…組成的等差數(shù)列的通項(xiàng)公式為,令,解得又,,.所以555在第7頁第17行故答案為:;16、24【解析】利用雙曲線定義結(jié)合已知求出,,再利用雙曲線的對稱性計(jì)算作答.【詳解】依題意,,,又,解得,,則有,即,連接,如圖,因過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),由雙曲線的對稱性知,P,Q關(guān)于原點(diǎn)O對稱,因此,四邊形是平行四邊形,,所以的面積為24.故答案為:24三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)利用已知條件證明為常數(shù)即可;(2)求出和通項(xiàng)公式,再求出通項(xiàng)公式,利用裂項(xiàng)相消法可求,判斷的單調(diào)性即可求其范圍.【小問1詳解】∵=2,(n≥2,),∴當(dāng)n≥2時(shí),(常數(shù)),∴數(shù)列{+1}是公比為3的等比數(shù)列;【小問2詳解】由(1)知,數(shù)列{+1}是以3為首項(xiàng),以3為公比的等比數(shù)列,∴,∴,∴∵,∴∴,∴∴.當(dāng)n≥2時(shí),∴{}為遞增數(shù)列,故的最小值為,∴.18、(1);(2)存在,理由見解析.【解析】(1)利用離心率,短軸長求出a,b,即可求得橢圓方程.(2)聯(lián)立直線與橢圓方程,利用韋達(dá)定理計(jì)算判定,由M為線段AB中點(diǎn)即可確定存在常數(shù)推理作答.【小問1詳解】因橢圓的短軸長是2,則,而離心率,解得,所以橢圓方程為.【小問2詳解】存在常數(shù),使恒成立,

由消去y并整理得:,設(shè),,則,,又,,,則有,而線段AB的中點(diǎn)為M,于是得,并且有所以存在常數(shù),使恒成立.19、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)延長,交橢圓C于點(diǎn).設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,根據(jù)對稱性求得四邊形的面積的表達(dá)式,利用換元法,結(jié)合基本不等式求得四邊形的面積的最大值.【小問1詳解】由題可知,即,因?yàn)檫^且垂直于長軸的弦長為1,所以,所以所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】因?yàn)椋簿€,所以延長,交橢圓C于點(diǎn).設(shè),由(1)可知,可設(shè)直線的方程為聯(lián)立,消去x可得,所以,由對稱性可知設(shè)與間的距離為d,則四邊形的面積令,則.因?yàn)椋?dāng)且僅當(dāng)時(shí)取等號,所以,即四邊形的面積的最大值為2【點(diǎn)睛】在橢圓、雙曲線、拋物線中,求三角形、四邊形面積的最值問題,求解策略是:首先結(jié)合弦長公式、點(diǎn)到直線距離公式等求得面積的表達(dá)式;然后利用基本不等式、二次函數(shù)的性質(zhì)等知識來求得最值.20、(1)(2)【解析】(1)根據(jù)題意求出值,求導(dǎo)后通過導(dǎo)數(shù)的值域求出斜率范圍,從而得到傾角范圍.(2)利用導(dǎo)數(shù)幾何意義得到過P點(diǎn)的切線方程,化簡后構(gòu)造m的函數(shù),求新函數(shù)的極大值極小值即可.【小問1詳解】因?yàn)?,則,解得,所以,則,故,,,,,切線的傾斜角的的取值范圍是,,.小問2詳解】設(shè)曲線與過點(diǎn),的切線相切于點(diǎn),則切線的斜率為,所以切線方程為因?yàn)辄c(diǎn),在切線上,所以,即,由題意,該方程有三解設(shè),則,令,解得或,當(dāng)或時(shí),,當(dāng)時(shí),,所以在和上單調(diào)遞減,在上單調(diào)遞增,故的極小值為,極大值為,所以實(shí)數(shù)的取值范圍是.21、【解析】若真命題,利用分離參數(shù)法結(jié)合指數(shù)函數(shù)性質(zhì),可得;若為真命題,利用分離參數(shù)法并結(jié)合基本不等式可得,再根據(jù)為真命題,為假命題,可知,一真命題一假命題;再分“為真命題,為假命題”和“為假命題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論