廣西賀州市桂梧高中2026屆數(shù)學高二上期末質量檢測試題含解析_第1頁
廣西賀州市桂梧高中2026屆數(shù)學高二上期末質量檢測試題含解析_第2頁
廣西賀州市桂梧高中2026屆數(shù)學高二上期末質量檢測試題含解析_第3頁
廣西賀州市桂梧高中2026屆數(shù)學高二上期末質量檢測試題含解析_第4頁
廣西賀州市桂梧高中2026屆數(shù)學高二上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西賀州市桂梧高中2026屆數(shù)學高二上期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.22.甲、乙兩名同學同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館3.《九章算術》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點,,,,若,則()A. B.C. D.4.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.5.已知集合,,則()A. B.C. D.6.已知矩形,為平面外一點,且平面,,分別為,上的點,且,,,則()A. B.C.1 D.7.已知直線l和拋物線交于A,B兩點,O為坐標原點,且,交AB于點D,點D的坐標為,則p的值為()A. B.1C. D.28.若數(shù)列滿足,則()A. B.C. D.9.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.10.函數(shù)的單調遞減區(qū)間為()A. B.C. D.11.已知等差數(shù)列的前項和為,,,,則的值為()A. B.C. D.12.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準線與x軸的交點,F(xiàn)為拋物線的焦點,P是拋物線上的動點,則最小值為_____14.若某幾何體的三視圖如圖所示,則該幾何體的體積是__________15.高二某位同學參加物理、政治科目的學考,已知這位同學在物理、政治科目考試中得A的概率分別為、,這兩門科目考試成績的結果互不影響,則這位考生至少得1個A的概率為______16.若函數(shù)的遞增區(qū)間是,則實數(shù)______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F(xiàn),G分別是,的中點(1)求證:平面;(2)求平面與平面的夾角的大小18.(12分)設函數(shù)(Ⅰ)求的單調區(qū)間;(Ⅱ)若,為整數(shù),且當時,恒成立,求的最大值.(其中為的導函數(shù).)19.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.20.(12分)已知圓C過點,,它與x軸的交點為,,與y軸的交點為,,且.(1)求圓C的標準方程;(2)若,直線,從點A發(fā)出的一條光線經直線l反射后與圓C有交點,求反射光線所在的直線的斜率的取值范圍.21.(12分)在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求直線與所成角的余弦值.22.(10分)已知數(shù)列{an}為等差數(shù)列,且a1+a5=-12,a4+a8=0.(1)求數(shù)列{an}的通項公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求數(shù)列{bn}的通項公式

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.2、A【解析】設出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A3、C【解析】建立坐標系,坐標表示向量,求出點坐標,進而求出結果.【詳解】以為坐標原點,,,的方向分別為x,y,z軸的正方向建立空間直角坐標系.不妨令,則,,,,,.因為,所以,則,,,,則解得,,,故.故選:C4、D【解析】經判斷點在圓內,與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內,連接,當時,弦長最短,,所以弦長,當過圓心時,最長等于直徑8,所以的取值范圍是故選:D5、B【解析】根據(jù)根式、分式的性質求定義域可得集合A,解一元二次不等式求集合B,再由集合的交運算求.【詳解】∵,,∴故選:B6、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因為,,所以所以,因為,所以,所以,故選:B7、B【解析】由垂直關系得出直線l方程,聯(lián)立直線和拋物線方程,利用韋達定理以及數(shù)量積公式得出p的值.【詳解】,,即聯(lián)立直線和拋物線方程得設,則解得故選:B8、C【解析】利用前項積與通項的關系可求得結果.【詳解】由已知可得.故選:C.9、C【解析】先根據(jù)垂直關系設切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結果.【詳解】因為切線與直線平行,所以切線方程可設為因為切線過點P(2,2),所以因為與圓相切,所以故選:C10、A【解析】先求定義域,再由導數(shù)小于零即可求得函數(shù)的單調遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域為,又,因為,所以由得,解得,所以函數(shù)的單調遞減區(qū)間為.故選:A.11、A【解析】由可求得,利用可構造方程求得.【詳解】,,,,,解得:.故選:A.12、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用已知條件求出p,設出P的坐標,然后求解的表達式,利用基本不等式即可得出結論【詳解】解:由題意可知:,設點,P到直線的距離為d,則,所以,當且僅當x時,的最小值為,此時,故答案為:【點睛】本題考查拋物線的簡單性質的應用,基本不等式的應用,屬于中檔題14、1【解析】根據(jù)三視圖可得如圖所示的幾何體,從而可求其體積.【詳解】據(jù)三視圖分析知,該幾何體為直三棱柱,且底面為直角邊為1的等腰直角三角形,高為2,所以其體積故答案為:115、【解析】根據(jù)給定條件利用相互獨立事件、對立事件的概率公式計算作答.【詳解】依題意,這位考生至少得1個A對立事件為物理、政治科目考試都沒有得A,其概率為,所以這位考生至少得1個A的概率為.故答案為:16、【解析】求得二次函數(shù)的單調增區(qū)間,即可求得參數(shù)的值.【詳解】因為二次函數(shù)開口向上,對稱軸為,故其單調增區(qū)間為,又由題可知:其遞增區(qū)間是,故.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取中點連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結果;(2)建立空間坐標系,求面和面的法向量,即可得到兩個面的二面角的余弦值,進而得到二面角大小.【小問1詳解】如上圖,取中點連接,連接,均為線段中點,且,又G是的中點,且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點,面,面面又面.【小問2詳解】建立如圖坐標系,設面的法向量為設面的法向量為兩個法向量的夾角余弦值為:,由圖知兩個面的二面角為鈍角,故夾角為.18、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域為,,分和兩種情況解不等式和即可得單調遞增區(qū)間和單調遞減區(qū)間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域為,當時,對于恒成立,此時函數(shù)在上單調遞增;當時,由可得;由可得;此時在上單調遞減,在上單調遞增;綜上所述:當時,函數(shù)的單調遞增區(qū)間為,當時,單調遞減區(qū)間為,單調遞增區(qū)間為,(Ⅱ)若,由可得,因為,所以,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調遞增,因為,,所以在上存在唯一零點,即,可得:,當時,,則,當時,,則,所以在上單調遞減,在上單調遞增,所以,因為,所以的最大值為.【點睛】方法點睛:利用導數(shù)研究函數(shù)單調性的方法:(1)確定函數(shù)的定義域;求導函數(shù),由(或)解出相應的的范圍,對應的區(qū)間為的增區(qū)間(或減區(qū)間);(2)確定函數(shù)的定義域;求導函數(shù),解方程,利用的根將函數(shù)的定義域分為若干個子區(qū)間,在這些子區(qū)間上討論的正負,由符號確定在子區(qū)間上的單調性.19、(1);(2)存在,T(0,1)﹒【解析】(1)根據(jù)橢圓的定義,結合即可求P的軌跡方程;(2)假設存在T(0,t),設AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.20、(1);(2).【解析】(1)設圓C的一般式方程為:,然后根據(jù)題意列出方程,解出D,E,F(xiàn)的值即可得到圓的方程;(2)先求出點關于直線l的對稱點,設反射光線所在直線方程為,利用直線和圓的位置關系列出不等式解出k的取值范圍即可.【詳解】(1)設圓C的一般式方程為:,令,得,所以,令,得,所以,所以有,所以,①又圓C過點,,所以有,②,③由①②③得,,,所以圓C的一般式方程為,標準方程為;(2)設關于的對稱點,所以有,解之得,故點,∴反射光線所在直線過點,設反射光線所在直線方程為:,所以有,所以反射光線所在的直線斜率取值范圍為.【點睛】本題考查圓的方程的求法,直線和圓的位置關系的應用,考查邏輯思維能力和運算求解能力,屬于常考題.21、(1)證明見解析;(2);【解析】(1)證明,利用面面垂直的性質可得出平面,再利用面面垂直的判定定理可證得平面平面;(2)連接,以點為坐標原點,、、所在直線分別為軸建立空間直角坐標系,設,根據(jù)可得出,求出的值,利用空間向量法可求得直線與所成角的余弦值.【詳解】(1)為的中點,且,則,又因為,則,故四邊形為平行四邊形,因為,故四邊形為矩形,所以,平面平面,平面平面,平面,平面,因為平面,因此,平面平面;(2)連接,由(1)可知,平面,,為的中點,則,以點為坐標原點,所在直線分別為軸建立空間直角坐標系,則、、、、,設,,因為,則,解得,,,則.因此,直線與所成角的余弦值為.22、(1)an=2n-12

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論