信號(hào)系統(tǒng)第四章拉普拉斯變換、連續(xù)時(shí)間系統(tǒng)的_第1頁(yè)
信號(hào)系統(tǒng)第四章拉普拉斯變換、連續(xù)時(shí)間系統(tǒng)的_第2頁(yè)
信號(hào)系統(tǒng)第四章拉普拉斯變換、連續(xù)時(shí)間系統(tǒng)的_第3頁(yè)
信號(hào)系統(tǒng)第四章拉普拉斯變換、連續(xù)時(shí)間系統(tǒng)的_第4頁(yè)
信號(hào)系統(tǒng)第四章拉普拉斯變換、連續(xù)時(shí)間系統(tǒng)的_第5頁(yè)
已閱讀5頁(yè),還剩110頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第四章 拉普拉斯變換與S域分析,第一節(jié) 引言,一、拉氏變換的優(yōu)點(diǎn),把線性時(shí)不變系統(tǒng)的時(shí)域模型簡(jiǎn)便地進(jìn)行變換,經(jīng)求解再還原為時(shí)間函數(shù)。 拉氏變換是求解常系數(shù)線性微分方程的工具。 應(yīng)用拉氏變換: (1)求解方程得到簡(jiǎn)化。且初始條件自動(dòng)包含在變換式里。 (2)拉氏變換將“微分”變換成“乘法”,“積分”變換成“除法”。即將微分方程變成代數(shù)方程。 拉氏變換將時(shí)域中卷積運(yùn)算變換成“乘法”運(yùn)算。 利用系統(tǒng)函數(shù)零點(diǎn)、極點(diǎn)分布分析系統(tǒng)的規(guī)律。,第二節(jié)拉氏變換的定義、收斂域,一、單邊拉氏變換定義,拉氏變換對(duì),二、拉氏變換的物理意義,拉氏變換是將時(shí)間函數(shù)f(t)變換為復(fù)變函數(shù)F(s),或作相反變換。 時(shí)域f(t)變

2、量t是實(shí)數(shù), 復(fù)頻域F(s)變量s是復(fù)數(shù)。變量s又稱(chēng)“復(fù)頻率”。 拉氏變換建立了時(shí)域與復(fù)頻域(s域)之間的聯(lián)系。,看出:將頻率變換為復(fù)頻率s,且只能描述振蕩的重復(fù)頻率,而s不僅能給出重復(fù)頻率,還給出振蕩幅度的增長(zhǎng)速率或衰減速率。,三、從算子法的概念說(shuō)明拉氏變換的定義,四、拉氏變換收斂域,思考:指數(shù)信號(hào)eat收斂坐標(biāo)是多少?,指出了收斂條件,拉氏變換收斂域舉例,五、 常用信號(hào)的拉氏變換,常用信號(hào)的拉氏變換,常用信號(hào)的拉氏變換,常用信號(hào)的拉氏變換,作業(yè),P250 4-1,第三節(jié)拉氏變換的基本性質(zhì),一、 拉氏變換的基本性質(zhì),例41,例45,例46,拉氏變換的基本性質(zhì),拉氏變換的基本性質(zhì),拉氏變換的基

3、本性質(zhì),拉氏變換的基本性質(zhì),作業(yè),P250 4-2,4-3,4-5,第四節(jié)拉氏逆變換,一、系統(tǒng)的s域分析方法,(1)部分分式展開(kāi)法,用拉氏變換方法分析系統(tǒng)時(shí),最后還要將象函數(shù)進(jìn)行拉氏反(逆)變換。 求解拉氏逆變換的方法有:,(2)留數(shù)法,二、部分分式展開(kāi)法,部分分式展開(kāi)法,例題42,例題41,部分分式展開(kāi)法,部分分式展開(kāi)法,+,部分分式展開(kāi)法,例題43,部分分式展開(kāi)法,部分分式展開(kāi)法,部分分式展開(kāi)法,例題44,三、留數(shù)法,留數(shù)法,舉例4.1:,舉例4.1:,s,舉例4.1:,舉例4.2:,舉例4.2:,舉例4.2:,舉例4.3:,舉例4.3:,舉例4.3:,舉例4.4:,舉例4.4:,舉例4.

4、4:,作業(yè),P251 4-4,第五節(jié)拉氏變換法求解常微分方程,一、 拉氏變換求解微分方程,拉氏變換求解微分方程,舉例4.5:,舉例4.5:,舉例4.5:,二、 S域電路分析,S域電路分析,S域電路分析,舉例4.16:,舉例4.5B:,舉例4.5B:,舉例4.5B:,舉例4.5B:,第六節(jié)系統(tǒng)函數(shù)(網(wǎng)絡(luò)函數(shù))H(s),一、 系統(tǒng)函數(shù)定義,二、系統(tǒng)函數(shù)求響應(yīng),系統(tǒng)函數(shù)求響應(yīng),系統(tǒng)函數(shù)求響應(yīng),第七節(jié)由系統(tǒng)函數(shù)零、極點(diǎn)分布決定時(shí)域特性,一、系統(tǒng)函數(shù)的零、極點(diǎn)分布,H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng),H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng),H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng),H(s)零、極點(diǎn)分布與h(

5、t)的對(duì)應(yīng),H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng)圖解,(1)極點(diǎn)在原點(diǎn):為單極點(diǎn),則系統(tǒng)沖激響應(yīng)為階躍函數(shù);為多重極點(diǎn),則系統(tǒng)為增長(zhǎng)函數(shù),為不穩(wěn)定系統(tǒng)。,H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng)圖解,(2)極點(diǎn)在s的左半平面:系統(tǒng)為衰減系統(tǒng),為穩(wěn)定系統(tǒng)。,H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng)圖解,(3)極點(diǎn)在s的虛軸上:?jiǎn)螛O點(diǎn)(一定為一對(duì)共軛極點(diǎn)),則系統(tǒng)為振蕩系統(tǒng),則系統(tǒng)為臨界穩(wěn)定系統(tǒng)。若系統(tǒng)為多重極點(diǎn),系統(tǒng)為增長(zhǎng)系統(tǒng),則系統(tǒng)為不穩(wěn)定系統(tǒng)。,H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng)圖解,(4)極點(diǎn)在s的右半平面:系統(tǒng)為增長(zhǎng)函數(shù),則系統(tǒng)為不穩(wěn)定系統(tǒng)。,H(s)零、極點(diǎn)分布與h(t)的對(duì)應(yīng),第八節(jié)由系統(tǒng)

6、函數(shù)零、極點(diǎn)分布決定頻響特性,一、H(s)零、極點(diǎn)分布與頻響特性的對(duì)應(yīng),H(s)零、極點(diǎn)分布與頻響特性的對(duì)應(yīng),系統(tǒng)正弦穩(wěn)態(tài)響應(yīng),系統(tǒng)頻響特性,二、舉例-濾波網(wǎng)絡(luò)的頻響特性,濾波網(wǎng)絡(luò)的頻響特性,濾波網(wǎng)絡(luò)的頻響特性,濾波網(wǎng)絡(luò)的頻響特性,三、S平面幾何分析法,S平面幾何分析,S平面幾何分析,當(dāng) 沿虛軸移動(dòng)時(shí),各復(fù)數(shù)因子(矢量)的模和輻角都隨之改變,于是就得出幅頻特性曲線和相頻特性曲線。這種方法稱(chēng)為“s平面幾何分析法”,S平面幾何分析,討論H(s)極點(diǎn)位于s平面實(shí)軸的情況,包括一階與二階系統(tǒng)。,S平面幾何分析,舉例4.20:,舉例4.7:,舉例4.7:,舉例4.7:,此點(diǎn)為高通濾波器的截止頻率點(diǎn)。,舉

7、例4.7:,舉例4.7:,舉例4.22:,舉例4.22:,舉例4.12:,舉例4.12:,舉例4.12:,舉例4.12:,舉例4.12:,舉例4.12:,舉例4.12:,第十一節(jié)線性系統(tǒng)的穩(wěn)定性,一、 線性系統(tǒng)的穩(wěn)定性,線性系統(tǒng)的穩(wěn)定性,例4-24,已知兩因果系統(tǒng)的系統(tǒng)函數(shù),激勵(lì)信號(hào)分別為,求兩種情況的響應(yīng),并討論系統(tǒng)穩(wěn)定性。,例4-24,解:激勵(lì)信號(hào)的拉氏變換為:,系統(tǒng)響應(yīng)的拉氏變換為,例4-24,系統(tǒng)響應(yīng)的時(shí)域表達(dá)式:,看出:激勵(lì)信號(hào)有界,而產(chǎn)生無(wú)界信號(hào)的輸出。說(shuō)明:系統(tǒng)屬不穩(wěn)定。 從系統(tǒng)函數(shù)的極點(diǎn)看:系統(tǒng)在虛軸上有一階極點(diǎn),屬臨界穩(wěn)定系統(tǒng)。,二、系統(tǒng)穩(wěn)定性在電路中的具體體現(xiàn),穩(wěn)定系統(tǒng):通常不含有受控源的RLC電路,一定為穩(wěn)定系統(tǒng)。 振蕩系統(tǒng):只有LC元件構(gòu)成的電路會(huì)出現(xiàn)H(s)極點(diǎn)位于虛軸的情況,h(t)呈等幅振蕩。 以上兩種情況都是無(wú)源網(wǎng)絡(luò),它們不能對(duì)外部供給能量,響應(yīng)函數(shù)幅度有

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論