高中數(shù)學(xué) 第二章 空間向量與立體幾何 6 距離的計算課件 北師大版選修2-1.ppt_第1頁
高中數(shù)學(xué) 第二章 空間向量與立體幾何 6 距離的計算課件 北師大版選修2-1.ppt_第2頁
高中數(shù)學(xué) 第二章 空間向量與立體幾何 6 距離的計算課件 北師大版選修2-1.ppt_第3頁
高中數(shù)學(xué) 第二章 空間向量與立體幾何 6 距離的計算課件 北師大版選修2-1.ppt_第4頁
高中數(shù)學(xué) 第二章 空間向量與立體幾何 6 距離的計算課件 北師大版選修2-1.ppt_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第二章空間向量與立體幾何,6距離的計算,1.掌握向量長度計算公式. 2.會用向量方法求兩點間的距離、點到直線的距離和點到平面的距離.,學(xué)習(xí)目標(biāo),知識梳理 自主學(xué)習(xí),題型探究 重點突破,當(dāng)堂檢測 自查自糾,欄目索引,知識梳理 自主學(xué)習(xí),知識點一兩點間的距離的求法,答案,知識點二點到直線的距離 (1)定義:因為直線和直線外一點確定一個平面,所以空間點A到直線l的距離問題就是空間中某一個平面內(nèi)的點到直線的距離問題,即過點A在該平面內(nèi)做垂直于l的直線,垂足為A,則 即為點A到直線l的距離.,AA,答案,返回,知識點三點到平面的距離 一點到它在一個平面內(nèi)的 的距離叫作這一點到這個平面的距離, 如圖所示,

2、設(shè)n是平面的法向量,AB是平面的一條斜線,則點B到平 面的距離d .若n0是平面的單位法向量,則d .,答案,投影,題型探究 重點突破,題型一點到直線的距離 例1如圖,在長方體ABCDA1B1C1D1中,已知AB3,BC4,AA15,求點A1到下列直線的距離: (1)直線AC; 解在長方體ABCDA1B1C1D1中, 顯然AA1AC, 所以AA15即為所求點A1到直線AC的距離.,解析答案,(2)直線BD. 解如圖建立空間直角坐標(biāo)系, 則有B(4,3,0),A1(4,0,5).,解析答案,反思與感悟,設(shè)點A1到直線BD的距離為d.所以,反思與感悟,本題(1)利用基本定義直接求解距離, (2)利

3、用向量方法求解,通過訓(xùn)練熟練掌握向量公式法求解.,解析答案,跟蹤訓(xùn)練1已知正方體ABCDA1B1C1D1的棱長為2,點E是A1B1的中點,則點A到直線BE的距離是(),解析答案,反思與感悟,題型二點到平面的距離,反思與感悟,解如圖建立空間直角坐標(biāo)系,,設(shè)平面A1BC的一個法向量為n(x,y,z),,反思與感悟,本題是一個基本的點面距離的求解問題,要從幾何角度作出這個距離有很大的困難,利用向量方法求解較為容易.,解析答案,跟蹤訓(xùn)練2四棱錐P-ABCD中,四邊形ABCD為正方形,PD平面ABCD,PDDA2,F(xiàn)、E分別為AD、PC的中點. (1)證明:DE平面PFB; 證明以D為原點,建立如圖所示

4、的空間直角坐標(biāo)系,,又DE不在平面PFB內(nèi),DE平面PFB.,解析答案,(2)求點E到平面PFB的距離. 解DE平面PFB, E到平面PFB的距離等于D到平面PFB的距離. 設(shè)平面PFB的一個法向量n(x,y,z),,解析答案,題型三線面、面面距離(選學(xué)) 例3在長方體ABCDA1B1C1D1中,AB4,BC3,CC12. (1)求證:直線CD1平面A1BC1; 證明建系如圖,則C(0,4,0),D1(0,0,2),B(3,4,0),A1(3,0,2),C1(0,4,2),,又CD1平面A1BC1,BA1平面A1BC1, CD1平面A1BC1.,(2)求直線CD1與平面A1BC1間的距離. 解

5、設(shè)平面A1BC1的法向量為n(x,y,z),則,取z6,則x4,y3,n(4,3,6),,解析答案,反思與感悟,反思與感悟,六種距離之間有密切聯(lián)系,有些可以相互轉(zhuǎn)化,如兩條平行線的距離可轉(zhuǎn)化為求點到直線的距離,平行線面間的距離或平行平面間的距離都可轉(zhuǎn)化成點到平面的距離.而且我們在求解時往往又轉(zhuǎn)化為空間向量的處理方法.,解析答案,返回,跟蹤訓(xùn)練3 如圖,正方體ABCDA1B1C1D1的棱長為4,M、N、E、F分別為A1D1、A1B1、C1D1、B1C1的中點,求平面AMN與平面EFBD間的距離.,解如圖所示,建立空間直角坐標(biāo)系Dxyz,則A(4,0,0),M(2,0,4),D(0,0,0),B(

6、4,4,0),E(0,2,4),F(xiàn)(2,4,4),N(4,2,4),,又EFBFF,AMMNM, EFMN,AMBF, 平面AMN平面EFBD. 設(shè)n(x,y,z)是平面AMN的法向量,,解析答案,返回,取z1,得n(2,2,1),,當(dāng)堂檢測,1,2,3,4,5,1.已知平面的一個法向量n(2,2,1),點A(1,3,0)在內(nèi),則P(2,1,4)到的距離為(),D,解析答案,又平面的一個法向量為n(2,2,1),,1,2,3,4,5,解析答案,2.在空間直角坐標(biāo)系中,已知P(1,0,3),Q(2,4,3),則線段PQ的長度為(),B,1,2,3,4,5,解析答案,A,即(x2,y1,z7)(8

7、,9,12),,x18,y17,z17.,解析答案,4.在空間直角坐標(biāo)系中,已知點A(1,0,2),B(1,3,1),點M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是_. 解析點M在y軸上,設(shè)M(0,y,0),則:,1,2,3,4,5,(0,1,0),所以1y241(3y)21, 解得y1,故M(0,1,0).,解析答案,1,2,3,4,5,解析答案,解如圖,取CD的中點O,連接OB,OM,因為BCD與MCD均為正三角形,所以O(shè)BCD,OMCD,又平面MCD平面BCD,所以MO平面BCD. 以O(shè)為坐標(biāo)原點,直線OC,BO,OM分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系Oxyz.,1,2,3,4,5,設(shè)平面MBC的法向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論