專(zhuān)題2:解析幾何中設(shè)點(diǎn)設(shè)斜率的策略選擇(教師版)_第1頁(yè)
專(zhuān)題2:解析幾何中設(shè)點(diǎn)設(shè)斜率的策略選擇(教師版)_第2頁(yè)
專(zhuān)題2:解析幾何中設(shè)點(diǎn)設(shè)斜率的策略選擇(教師版)_第3頁(yè)
專(zhuān)題2:解析幾何中設(shè)點(diǎn)設(shè)斜率的策略選擇(教師版)_第4頁(yè)
專(zhuān)題2:解析幾何中設(shè)點(diǎn)設(shè)斜率的策略選擇(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、常青藤實(shí)驗(yàn)中學(xué)2015屆高三理科研究性學(xué)習(xí)材料(解析幾何部分)專(zhuān)題2:解析幾何中設(shè)點(diǎn)設(shè)斜率的策略選擇【問(wèn)題提出】1. 過(guò)原點(diǎn)作直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)是橢圓上一點(diǎn),且直線(xiàn)斜率均存在,則 . 2. 過(guò)原點(diǎn)作兩條相互垂直的直線(xiàn)分別與橢圓交于與,則四邊形面積的最小值為 .【探究拓展】探究1:如圖在平面直角坐標(biāo)系中,的焦距為2,且過(guò)點(diǎn).(1)求橢圓的方程;(2)若點(diǎn),分別是橢圓的左、右頂點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn)且垂直于軸,點(diǎn)是橢圓上異于,的任意一點(diǎn),直線(xiàn)交于點(diǎn) 設(shè)直線(xiàn)的斜率為直線(xiàn)的斜率為,求證:為定值; 設(shè)過(guò)點(diǎn)垂直于的直線(xiàn)為.求證:直線(xiàn)過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).解:由題意得 ,所以,又, 消去可得,解得或(舍去)

2、,則,所以橢圓的方程為()設(shè),則,因?yàn)槿c(diǎn)共線(xiàn),所以, 所以,因?yàn)樵跈E圓上,所以,故為定值()法一:直線(xiàn)的斜率為,直線(xiàn)的斜率為,則直線(xiàn)的方程為, =,所以直線(xiàn)過(guò)定點(diǎn) 法二:直線(xiàn)方程為則.,則直線(xiàn)方程為:,即,直線(xiàn)過(guò)定點(diǎn).探究2:已知中心在原點(diǎn)的橢圓過(guò)點(diǎn)和點(diǎn),(1)求橢圓的標(biāo)準(zhǔn)方程(2)是橢圓上的兩個(gè)動(dòng)點(diǎn),若直線(xiàn)的斜率存在,且和為,求證:直線(xiàn)過(guò)定點(diǎn). 解:(1)設(shè)橢圓方程:,橢圓過(guò)點(diǎn)和點(diǎn),則,解得,所以橢圓的標(biāo)準(zhǔn)方程為(2)設(shè)直線(xiàn)的斜率分別為和(且) ,則直線(xiàn)的方程為,設(shè)由,消去得,由題意,則,同理可求得,法一:取得,求得直線(xiàn)方程為, 取得,求得直線(xiàn)方程為,求得以上兩直線(xiàn)交點(diǎn)為.則 , .即點(diǎn)共

3、線(xiàn). 直線(xiàn)過(guò)定點(diǎn).法二: .則直線(xiàn)方程為化簡(jiǎn)得,所以直線(xiàn)過(guò)定點(diǎn).探究3:如圖,在平面直角坐標(biāo)系中,已知分別是橢圓E:的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且. (1)求橢圓E的離心率;(2)已知點(diǎn)為線(xiàn)段的中點(diǎn),M 為橢圓上的動(dòng)點(diǎn)(異于點(diǎn)、),連接并延長(zhǎng)交橢圓于點(diǎn),連接、并分別延長(zhǎng)交橢圓于點(diǎn)、,連接,設(shè)直線(xiàn)、的斜率存在且分別為、,試問(wèn)是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說(shuō)明理由.解:(1),.,化簡(jiǎn)得,故橢圓E的離心率為.(2)存在滿(mǎn)足條件的常數(shù),.點(diǎn)為線(xiàn)段的中點(diǎn),從而,左焦點(diǎn),橢圓E的方程為.設(shè),則直線(xiàn)的方程為,代入橢圓方程,整理得,.,.從而,故點(diǎn).同理,點(diǎn).三點(diǎn)、

4、共線(xiàn),從而.從而.故,從而存在滿(mǎn)足條件的常數(shù),.【自主練習(xí)】1. 已知橢圓G:(ab0)的離心率為,右焦點(diǎn)F(1,0)過(guò)點(diǎn)F作斜率為k(k0)的直線(xiàn)l,交橢圓G于A、B兩點(diǎn),M(2,0)是一個(gè)定點(diǎn)如圖所示,連AM、BM,分別交橢圓G于C、D兩點(diǎn)(不同于A、B),記直線(xiàn)CD的斜率為(1)求橢圓G的方程;(2)在直線(xiàn)l的斜率k變化的過(guò)程中,是否存在一個(gè)常數(shù),使得恒成立?若存在,求出這個(gè)常數(shù);若不存在,請(qǐng)說(shuō)明理由2. 如圖,已知橢圓過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別是. 點(diǎn)為直線(xiàn)上且不在軸上的任意一點(diǎn),直線(xiàn)和與橢圓的交點(diǎn)分別為和,O為坐標(biāo)原點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程. (2)設(shè)直線(xiàn)、的斜率分別為、. 證

5、明:; 問(wèn)直線(xiàn)上是否存在點(diǎn),使得直線(xiàn)的斜率之和為0?若存在,求出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由. 解:(1)因?yàn)闄E圓過(guò)點(diǎn) 所以. 又 所以1. 故所求橢圓的標(biāo)準(zhǔn)方程為. (2)(i)證明:方法1:由于 、F 、PF的斜率分別為、k且點(diǎn)P不在x軸上,所以. 又直線(xiàn)的方程分別為 聯(lián)立方程解得 所以. 由于點(diǎn)P在直線(xiàn)x+y=2上, 所以. 因此 即結(jié)論成立. 方法2:設(shè)則. 因?yàn)辄c(diǎn)P不在x軸上,所以. 又 所以. 因此結(jié)論成立. () 解:設(shè). 聯(lián)立直線(xiàn)與橢圓的方程得 化簡(jiǎn)得 因此 由于OA,OB的斜率存在, 所以因此. 因此 . 相似地,可以得到 . 若須有或. 當(dāng)時(shí),結(jié)合()的結(jié)論

6、,可得,所以解得點(diǎn)P的坐標(biāo)為(0,2); 當(dāng)時(shí),結(jié)合()的結(jié)論,解得或此時(shí)不滿(mǎn)足舍去),此時(shí)直線(xiàn)CD的方程為y=3(x-1),聯(lián)立方程x+y=2得. 因此. 綜上所述,滿(mǎn)足條件的點(diǎn)P的坐標(biāo)分別為(03. 如圖,橢圓經(jīng)過(guò)點(diǎn)離心率,直線(xiàn)的方程為.(1)求橢圓的方程;(2)是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),設(shè)直線(xiàn)與直線(xiàn)相交于點(diǎn),記的斜率分別為問(wèn):是否存在常數(shù),使得?若存在求的值;若不存在,說(shuō)明理由.解:(1)由在橢圓上得, 依題設(shè)知,則 代入解得. 故橢圓的方程為. (2)方法一:由題意可設(shè)的斜率為, 則直線(xiàn)的方程為 代入橢圓方程并整理,得, 設(shè),則有 在方程中令得,的坐標(biāo)為. 從而. 注意到共線(xiàn),則有,即有. 所以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論