高中數(shù)學(xué) 第二章 平面向量數(shù)量積的坐標(biāo)表示說課教案 北師大版必修_第1頁
高中數(shù)學(xué) 第二章 平面向量數(shù)量積的坐標(biāo)表示說課教案 北師大版必修_第2頁
高中數(shù)學(xué) 第二章 平面向量數(shù)量積的坐標(biāo)表示說課教案 北師大版必修_第3頁
高中數(shù)學(xué) 第二章 平面向量數(shù)量積的坐標(biāo)表示說課教案 北師大版必修_第4頁
高中數(shù)學(xué) 第二章 平面向量數(shù)量積的坐標(biāo)表示說課教案 北師大版必修_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、平面向量數(shù)量積的坐標(biāo)表示一、教材分析1本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運算兩個知識點緊密聯(lián)系起來,是全章重點之一。2.學(xué)生情況分析:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運算,但數(shù)量積是用長度和夾角這兩個概念來表示的,應(yīng)用起來不太方便,如何用坐標(biāo)這一最基本、最常用的工具來表示數(shù)量積,使之應(yīng)用更方便,就是擺在學(xué)生面前的一個亟待解決的問題。因此,本節(jié)內(nèi)容的學(xué)習(xí)是學(xué)生認(rèn)知發(fā)展和知識構(gòu)建的一個合情、合理的“生長點”。所以,本節(jié)課采取以學(xué)生自主完成為

2、主,教師查漏補缺的教學(xué)方法。因此結(jié)合中學(xué)生的認(rèn)知結(jié)構(gòu)特點和學(xué)生實際。我將本節(jié)教學(xué)目標(biāo)確定為:1、理解掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會進行數(shù)量積的運算。理解掌握向量的模、夾角等公式。能根據(jù)公式解決兩個向量的夾角、垂直等問題2、經(jīng)歷根據(jù)平面向量數(shù)量積的意義探究其坐標(biāo)表示的過程,體驗在此基礎(chǔ)上探究發(fā)現(xiàn)向量的模、夾角等重要的度量公式的成功樂趣,培養(yǎng)學(xué)生的探究能力、創(chuàng)新精神。教學(xué)重點平面向量數(shù)量積的坐標(biāo)表示及應(yīng)用.教學(xué)難點探究發(fā)現(xiàn)公式二、教學(xué)方法和手段1教學(xué)方法:結(jié)合本節(jié)教材淺顯易懂,又有前面平面向量的數(shù)量積和向量的坐標(biāo)表示等知識作鋪墊的內(nèi)容特點,兼顧高一學(xué)生已具備一定的數(shù)學(xué)思維能力和處理向量問題的方

3、法的現(xiàn)狀,我主要采用“誘思探究教學(xué)法”,其核心是“誘導(dǎo)思維,探索研究”,其教學(xué)思想是“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的原則,為此,我通過精心設(shè)置的一個個問題,激發(fā)學(xué)生的求知欲,積極的鼓勵學(xué)生的參與,給學(xué)生獨立思考的空間,鼓勵學(xué)生自主探索,最終在教師的指導(dǎo)下去探索發(fā)現(xiàn)問題,解決問題。在教學(xué)中,我適時的對學(xué)生學(xué)習(xí)過程給予評價,適當(dāng)?shù)脑u價,可以培養(yǎng)學(xué)生的自信心,合作交流的意識,更進一步地激發(fā)了學(xué)生的學(xué)習(xí)興趣,讓他們體驗成功的喜悅。2教學(xué)手段:利用多媒體輔助教學(xué),可以加大一堂課的信息容量,極大提高學(xué)生的學(xué)習(xí)興趣。三、學(xué)法指導(dǎo)改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。獨立思考,自主探索,動手實

4、踐,合作交流等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的“再創(chuàng)造”的過程。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨立思考,積極探索的習(xí)慣。為了實現(xiàn)這一目標(biāo),本節(jié)教學(xué)讓學(xué)生主動參與,讓學(xué)生動手,動口、動腦。通過思考、計算、歸納、推理,鼓勵學(xué)生多向思維,積極活動,勇于探索。具體體現(xiàn)在:1、通過提出問題,把問題的求解與探究貫穿整堂課,使學(xué)生在自主探究中發(fā)現(xiàn)了結(jié)論,推廣了命題,使學(xué)生感到成果是自己得到的,增強了成就感,培養(yǎng)了學(xué)生學(xué)好數(shù)學(xué)的信心和良好的學(xué)習(xí)動機。2、通過數(shù)與形的充分挖掘,通過對向量平行與垂直條件的坐標(biāo)表示的類比,培養(yǎng)了學(xué)生數(shù)形結(jié)

5、合的數(shù)學(xué)思想,教給了學(xué)生類比聯(lián)想的記憶方法。四、教學(xué)程序本節(jié)課分為復(fù)習(xí)回顧、定理推導(dǎo)、引申推廣、例題講析、練習(xí)與小結(jié)五部分。復(fù)習(xí)回顧部分通過兩個問題,復(fù)習(xí)了與本節(jié)內(nèi)容相關(guān)的數(shù)量積概念,為本節(jié)內(nèi)容的學(xué)習(xí)作了必要的鋪墊。定理推導(dǎo)部分通過設(shè)問,引出尋求向量的數(shù)量積的坐標(biāo)表示的必要性,引入課題,并引導(dǎo)學(xué)生應(yīng)用前述知識共同推導(dǎo)出數(shù)量積的坐標(biāo)表示。引申推廣部分,讓學(xué)生自主推導(dǎo)出向量的長度公式,向量垂直條件的坐標(biāo)表示、夾角公式等三個結(jié)論,強化了學(xué)生的動手能力和自主探究能力。例題講析,通過四道緊扣教材的例題的精講,突出了結(jié)論的應(yīng)用,也起到了示范作用。練習(xí)及小結(jié):通過練習(xí)題驗收教學(xué)效果,突出訓(xùn)練主線,小結(jié)部分畫

6、龍點睛,強調(diào)本節(jié)重點。再結(jié)合課后作業(yè),進一步實現(xiàn)本節(jié)課的教學(xué)目的。同時小結(jié)也體現(xiàn)主體性,由教師提出問題學(xué)生總結(jié)得出。課題:平面向量數(shù)量積的坐標(biāo)表示授課教師:單位:課 型:新授課三維目標(biāo)知識與技能: 理解掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會進行數(shù)量積的運算。理解掌握向量的模、夾角等公式。能根據(jù)公式解決兩個向量的夾角、垂直等問題。過程與方法:.1、通過提出問題,把問題的求解與探究貫穿整堂課,學(xué)生在自主探究中發(fā)現(xiàn)了結(jié)論2、通過對向量平行與垂直的充要條件的坐標(biāo)表示的類比,教給了學(xué)生類比聯(lián)想的記憶方法。情感態(tài)度與價值觀經(jīng)歷根據(jù)平面向量數(shù)量積的意義探究其坐標(biāo)表示的過程,體驗在此基礎(chǔ)上探究發(fā)現(xiàn)向量的模、夾角等

7、重要的度量公式的成功樂趣,培養(yǎng)學(xué)生的探究能力、創(chuàng)新精神教學(xué)重點:平面向量數(shù)量積的坐標(biāo)表示.教學(xué)難點:向量數(shù)量積的坐標(biāo)表示的應(yīng)用.教學(xué)方法:探究發(fā)現(xiàn)公式教學(xué)手段:多媒體課件教學(xué)流程教學(xué)內(nèi)容師生活動設(shè)計意圖一、復(fù)習(xí)提問創(chuàng)設(shè)情境導(dǎo)入課出示學(xué)習(xí)目標(biāo)二、新課探究 三、例題與練習(xí)四課堂小結(jié)五、作業(yè)課后記:a與b的數(shù)量積 的定義?向量的運算有幾種?應(yīng)怎樣計算?出示學(xué)習(xí)目標(biāo):1、理解掌握平面向量數(shù)量積的坐標(biāo)表示、向量的 夾角、模的 公式.2、兩個向量垂直的坐標(biāo)表示3、運用兩個向量的數(shù)量積的坐標(biāo)表示初步解決處理有關(guān)長度垂直的幾個問題.探究1:已知兩個非零向量a=(x1,x2),b=(x2,y2),怎樣用a與b的

8、坐標(biāo)表示數(shù)量積ab呢?ab=(x1,y1)(x2,y2)=(x1i+y1j)(x2i+y2j)=x1x2i2+x1y2ij+x2y1ij+y1y2j2=x1x2+y1y2即:兩個向量的數(shù)量積等于它們對應(yīng)坐標(biāo)的乘積的和探究2:探索發(fā)現(xiàn)向量的模的坐標(biāo)表達(dá)式若a=(x,y),如何計算向量的模|a|呢? 若A(x1,x2),B(x2,y2),如何計算向量AB的模兩點A、B間的距離呢?探究3:向量夾角、垂直、坐標(biāo)表示設(shè)a,b都是非零向量,a=(x1,y1),b(x2,y2),如何判定ab或計算a與b的夾角呢?1、向量夾角的坐標(biāo)表示2、abab=0x1x2+y1y2=03、ab X1y2-x2y1=01、

9、a=(5,-7),b=(-6,-4),求a與b的 數(shù)量積2、設(shè)a=(2,1),b=(1,3),求ab及a與b的夾角3、已知向量a=(-2,-1),b=(,1)若a與b的夾角為鈍角,則取值范圍是多少?4、已知A(1, 2),B(2,3),C(2,5),試判定ABC的形狀,并給出證明。練習(xí):書P97,1,2,書P98習(xí)題2-6A第5題書P98習(xí)題2-6B組教師由復(fù)習(xí)導(dǎo)入課教師出示目標(biāo)師生:學(xué)生回答提出的問題,教師點評學(xué)生:合作探索提出的問題。教師:巡視輔導(dǎo)學(xué)生,解決遇到的困難,估計學(xué)生對正交單位基向量i,j的運算可能有困難,點撥學(xué):i2=1,j2=1,ij=0師生:學(xué)生展示探究結(jié)果,教師給予點評教師提出問題學(xué)生:獨立思考探究合作交流讓學(xué)生展示探究的結(jié)論,教師總結(jié)學(xué)生:獨立思考、探究,合作交流,師生:讓學(xué)生展示探究的結(jié)論,教師總結(jié)提醒學(xué)生ab與ab坐標(biāo)表達(dá)式的不同學(xué)生自己完成學(xué)生自己完成學(xué)生自己完成學(xué)生完成例4,總結(jié)解題方法,師生:師生交流、點評判定三角形形狀的方法。培養(yǎng)學(xué)生思維的靈活性。教師巡視個別輔導(dǎo)。師生:每完成一個題目就交流點評。學(xué)生:獨立探求解題思路,加以解決。師生:讓學(xué)生匯報解題思路、過程,教師加以點評、完善。師生:由學(xué)生小結(jié)交流完善?;仡櫰矫嫦蛄繑?shù)量積的意義,為探究數(shù)量積的坐標(biāo)表示做好

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論