cs230ppt深度學(xué)習(xí)cs230pptc5m2_W_第1頁(yè)
cs230ppt深度學(xué)習(xí)cs230pptc5m2_W_第2頁(yè)
cs230ppt深度學(xué)習(xí)cs230pptc5m2_W_第3頁(yè)
cs230ppt深度學(xué)習(xí)cs230pptc5m2_W_第4頁(yè)
cs230ppt深度學(xué)習(xí)cs230pptc5m2_W_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、NLP and WordEmbeddingsWord representationdeeplearning.aiWord representationV = a, aaron, , zulu, 1-hot representationWoman (9853)Apple (456)Orange (6257)Man (5391)King (4914)Queen (7157)I want a glass of orange.I want a glass of apple .000010000000100001000000001000000100100000Andrew NgFeaturized re

2、presentation: word embeddingMan (5391)Woman (9853)King (4914)Queen (7157)Apple (456)Orange (6257)0.97-0.950.000.010.950.93-0.010.000.70.690.03-0.020.020.010.950.97I want a glass of orange .I want a glass of apple .Andrew NgVisualizing word embeddingsAndrew Ngvan der Maaten and Hinton., 2008. Visuali

3、zing data using t-SNEmanwomandogkingcatqueenfishgrap applethree foureoneorangetwoNLP and WordEmbeddingsUsing wordembeddingsdeeplearning.aiNamed entity recognition example101000SallyJohnsonisanorangefarmerRobertLinisanapplefarmerAndrew NgTransfer learning and word embeddings1.Learn word embeddings fr

4、om large text corpus. (1-100B words)(Or download pre-trained embedding online.)2.Transfer embedding to new task with smaller training set. (say, 100k words)3.Optional: Continue to finetune the word embeddings with new data.Andrew NgRelation to faceencoding$(&)f($(&)*$()f($()Taigman et. al., 2014. De

5、epFace: Closing the gap to human level performanceAndrew NgNLP and WordEmbeddingsProperties of wordembeddingsdeeplearning.aiAnalogiesMan (5391)Woman (9853)King (4914)Queen (7157)Apple (456)Orange (6257)Gender Royal AgeFood10.010.030.090.970.950.690.0110.020.020.01-0.950.930.700.020.00-0.010.030.950.

6、010.00-0.020.97Mikolov et. al., 2013, Linguistic regularities in continuous space word representationsAndrew NgAnalogies using word vectors()*+ (,-)*+ (/0+1 (?Andrew Ngmandogkingwomancatqueenfishthreefourgrapeapple onetwoorangeCosine similarity345(, (/0+1 ()*+ (,-)*+)Man:Woman as Boy:Girl Ottawa:Can

7、ada as Nairobi:Kenya Big:Bigger as Tall:TallerYen:Japan as Ruble:RussiaAndrew NgNLP and WordEmbeddingsEmbedding matrixdeeplearning.aiEmbedding matrixIn practice, use specialized function to look up an embedding.Andrew NgNLP and WordEmbeddingsLearning wordembeddingsdeeplearning.aiNeural language mode

8、lI4343want9665aglassoforange.1385261636257Iwant aglass oforange*+,+,45+,+,*-./*05-./5044*,1/245,1/25.0.,4*.0.,*.2/35.2/34Bengio et. al., 2003, A neural probabilistic language modelAndrew NgOther context/target pairsI want a glass of orange juice to go along with my cereal.Context: Last 4 words.4 wor

9、ds on left & rightLast 1 wordNearby 1 wordAndrew NgNLP and WordEmbeddingsWord2Vecdeeplearning.aiSkip-gramsI want a glass of orange juice to go along with my cereal.Mikolov et. al., 2013. Efficient estimation of word representations in vector space.Andrew NgModelVocab size = 10,000kAndrew NgProblems

10、with softmax classification(&)%*!#=&()-.,.01-*%,How to sample the context #?Andrew NgNLP and WordEmbeddingsNegative samplingdeeplearning.aiDefining a new learning problemI want a glass of orange juice to go along with my cereal.Mikolov et. al., 2013. Distributed representation of words and phrases a

11、nd their compositionalityAndrew NgModelSoftmax:(&)%*! #=context orange orange orange orange orange(wordjuicetarget?10000-.,. %&, )*01-king book the ofAndrew NgSelecting negative examplescontext orange orange orange orange orangewordjuice king book the oftarget?10000Andrew NgNLP and WordEmbeddingsGlo

12、Ve word vectorsdeeplearning.aiGloVe (globalvectors forword representation)I want a glass of orange juice to go along with my cereal.Pennington et. al., 2014. GloVe: Global vectors for word representationAndrew NgModelAndrew NgA note on the featurization view of word embeddingsMan (5391)Woman (9853)K

13、ing (4914)Queen (7157)Gender Royal AgeFood10.010.030.090.970.950.690.0110.020.020.01-0.950.930.700.026minimize 78,888 78,888 (,-.+ 0 02 log )*+*+*+*:7+:7Andrew NgNLP and WordEmbeddingsSentimentclassificationdeeplearning.aiSentiment classificationproblem!The dessert is excellent.Service was quite slo

14、w.Good for a quick meal, but nothing special.Completely lacking in good taste, good service, and good ambience.Andrew NgSimple sentiment classification modelThe8928dessert2468is4694excellent3180The#$%&$,-$%&$desert#&($,-&($is#(%,-(%excellent#)*$+,-)*$+“Completely lacking in good taste, good service,

15、 and good ambience.”Andrew NgRNN for sentiment classification8:;+-*$6&-%(-&7-)$&-)+,Completelylackingingood.ambienceAndrew Ng:;*+:;:;):;&:;*softmaxNLP and WordEmbeddingsDebiasing wordembeddingsdeeplearning.aiThe problem of bias in word embeddingsMan:Woman as King:QueenMan:Computer_Programmer as Woma

16、n: HomemakerFather:Doctor as Mother:NurseWord embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the text used to train the model.Bolukbasi et. al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddingsAndrew NgAddressing bias in word e

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論