(北師大版)小學數(shù)學總復習資料_第1頁
(北師大版)小學數(shù)學總復習資料_第2頁
(北師大版)小學數(shù)學總復習資料_第3頁
(北師大版)小學數(shù)學總復習資料_第4頁
(北師大版)小學數(shù)學總復習資料_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、小學數(shù)學總復習資料目錄數(shù)和數(shù)的運算2一、概念2二、方法5三、性質(zhì)和規(guī)律7四、運算的意義8五、應用11度量衡19一、長度19二、面積20三、體積和容積20四、質(zhì)量21五、時間21六、貨幣21代數(shù)初步知識22一、用字母表示數(shù)22二、簡易方程24三、解方程24四、列方程解應用題24五、比和比例25幾何的初步知識26一、線和角26二、平面圖形27三、立體圖形30簡單的統(tǒng)計31一、統(tǒng)計表31二、統(tǒng)計圖32數(shù)和數(shù)的運算一、概念一整數(shù)1整數(shù)的意義自然數(shù)和0都是整數(shù)。2自然數(shù)我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3叫做自然數(shù)。一個物體也沒有,用0表示。0也是自然數(shù)。3計數(shù)單位一個、十、百、千、萬、十萬

2、、百萬、千萬、億都是計數(shù)單位。每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。4數(shù)位計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。5數(shù)的整除整數(shù)a除以整數(shù)bb0,除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a。如果數(shù)a能被數(shù)bb0整除,a就叫做b的倍數(shù),b就叫做a的因數(shù)或a的因數(shù)。倍數(shù)和因數(shù)是相互依存的。因為35能被7整除,所以35是7的倍數(shù),7是35的因數(shù)。一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。例如:10的因數(shù)有1、2、5、10,其中最小的因數(shù)是1,最大的因數(shù)是10。一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本

3、身。3的倍數(shù)有:3、6、9、12其中最小的倍數(shù)是3,沒有最大的倍數(shù)。個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。一個數(shù)的末兩位數(shù)能被4或25整除,這個數(shù)就能被4或25整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。一個數(shù)的末三位

4、數(shù)能被8或125整除,這個數(shù)就能被8或125整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的數(shù)叫做偶數(shù)。不能被2整除的數(shù)叫做奇數(shù)。0也是偶數(shù)。自然數(shù)按能否被2整除的特征可分為奇數(shù)和偶數(shù)。一個數(shù),如果只有1和它本身兩個因數(shù),這樣的數(shù)叫做質(zhì)數(shù)或素數(shù),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一個數(shù),如果除了1和它本身還有別的因數(shù),這樣的數(shù)叫做合數(shù),例如4、6、8、9、12都是合數(shù)。1不是質(zhì)數(shù)也不是合數(shù),

5、自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其因數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=3×5,3和5叫做15的質(zhì)因數(shù)。把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。例如把28分解質(zhì)因數(shù):28=2×2×7幾個數(shù)公有的因數(shù),叫做這幾個數(shù)的公因數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公因數(shù),例如12的因數(shù)有1、2、3、4、6、12;18的因數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因數(shù),6是它們的最大公因數(shù)。公因數(shù)只有1的兩個數(shù),叫

6、做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有以下幾種情況:1和任何自然數(shù)互質(zhì)。相鄰的兩個自然數(shù)互質(zhì)。兩個不同的質(zhì)數(shù)互質(zhì)。當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。兩個合數(shù)的公因數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。如果兩個數(shù)是互質(zhì)數(shù),它們的最大公因數(shù)就是1。幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6、8、10、12、14、16、183的倍數(shù)有3、6、9、12、15、18其中6、12、18是2、3的公倍數(shù),6是它們的最小公倍數(shù)。如果較大數(shù)是

7、較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。幾個數(shù)的公因數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。二小數(shù)1小數(shù)的意義把整數(shù)1平均分成10份、100份、1000份得到的十分之幾、百分之幾、千分之幾可以用小數(shù)表示。一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾一個小數(shù)由整數(shù)局部、小數(shù)局部和小數(shù)點局部組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)局部,小數(shù)點左邊的數(shù)叫做整數(shù)局部,小數(shù)點右邊的數(shù)叫做小數(shù)局部。在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)局部的最高分數(shù)單位十分之一和整數(shù)局部的最低單位一之

8、間的進率也是10。2小數(shù)的分類純小數(shù):整數(shù)局部是零的小數(shù),叫做純小數(shù)。例如:0.25、0.368都是純小數(shù)。帶小數(shù):整數(shù)局部不是零的小數(shù),叫做帶小數(shù)。例如:3.25、5.26都是帶小數(shù)。有限小數(shù):小數(shù)局部的數(shù)位是有限的小數(shù),叫做有限小數(shù)。例如:41.7、25.3、0.23都是有限小數(shù)。無限小數(shù):小數(shù)局部的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如:4.333.1415926無限不循環(huán)小數(shù):一個數(shù)的小數(shù)局部,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。例如:循環(huán)小數(shù):一個數(shù)的小數(shù)局部,有一個數(shù)字或者幾個數(shù)字依次不斷重復出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。例如:3.5550.033312.109109

9、一個循環(huán)小數(shù)的小數(shù)局部,依次不斷重復出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。例如:3.99的循環(huán)節(jié)是9,0.5454的循環(huán)節(jié)是54。純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)局部第一位開始的,叫做純循環(huán)小數(shù)。例如:3.1110.5656混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)局部第一位開始的,叫做混循環(huán)小數(shù)。3.12220.03333寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)局部只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán)節(jié)只有一個數(shù)字,就只在它的上面點一個點。例如:3.777簡寫作0.5302302簡寫作。三分數(shù)1分數(shù)的意義把單位1平均分成假設干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。在分數(shù)里,中間的

10、橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位1平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。把單位1平均分成假設干份,表示其中的一份的數(shù),叫做分數(shù)單位。2分數(shù)的分類真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。3約分和通分把一個分數(shù)化成同它相等但是分子、分母都比擬小的分數(shù),叫做約分。分子分母是互質(zhì)數(shù)的分數(shù),叫做最簡分數(shù)。把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。四百分數(shù)1表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù)

11、,也叫做百分率或百分比。百分數(shù)通常用“%來表示。百分號是表示百分數(shù)的符號。二、方法一數(shù)的讀法和寫法1整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個億或萬字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。2整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。3小數(shù)的讀法:讀小數(shù)的時候,整數(shù)局部按照整數(shù)的讀法讀,小數(shù)點讀作點,小數(shù)局部從左向右順次讀出每一位數(shù)位上的數(shù)字。4小數(shù)的寫法:寫小數(shù)的時候,整數(shù)局部按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)局部順次寫出每一個數(shù)位上的數(shù)字。5分數(shù)的讀法:讀分數(shù)時

12、,先讀分母再讀分之然后讀分子,分子和分母按照整數(shù)的讀法來讀。6分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。7百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。8百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號%來表示。二數(shù)的改寫一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用萬或億作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。1準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。例如把1254300000改寫成以萬做單位的數(shù)是125430萬

13、;改寫成以億做單位的數(shù)12.543億。2近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。例如:1302490015省略億后面的尾數(shù)是13億。3四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略345900萬后面的尾數(shù)約是35萬。省略4725097420億后面的尾數(shù)約是47億。4大小比擬比擬整數(shù)大?。罕葦M整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。比擬小數(shù)的大

14、小:先看它們的整數(shù)局部,整數(shù)局部大的那個數(shù)就大;整數(shù)局部相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大比擬分數(shù)的大小:分母相同的分數(shù),分子大的分數(shù)比擬大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比擬兩個數(shù)的大小。三數(shù)的互化1小數(shù)化成分數(shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。2分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保存三位小數(shù)。3一個最簡分數(shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中

15、含有2和5以外的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。4小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。5百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。6分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)除不盡時,通常保存三位小數(shù),再把小數(shù)化成百分數(shù)。7百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。四數(shù)的整除1把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。2求幾個數(shù)的最大公因數(shù)的方法是:先用這幾個數(shù)的公因數(shù)連續(xù)去除,一直除到所得的商只有公因數(shù)1為止,然后把所有的除數(shù)連乘求積,這

16、個積就是這幾個數(shù)的的最大公因數(shù)。3求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)或其中的局部數(shù)的公因數(shù)去除,一直除到互質(zhì)或兩兩互質(zhì)為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。4成為互質(zhì)關(guān)系的兩個數(shù):1和任何自然數(shù)互質(zhì);相鄰的兩個自然數(shù)互質(zhì);當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì);兩個合數(shù)的公因數(shù)只有1時,這兩個合數(shù)互質(zhì)。五約分和通分約分的方法:用分子和分母的公因數(shù)1除外去除分子、分母;通常要除到得出最簡分數(shù)為止。通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。三、性質(zhì)和規(guī)律一商不變的性質(zhì)商不變的規(guī)律:在除法里,被除數(shù)和

17、除數(shù)同時擴大或者同時縮小相同的倍,商不變。二小數(shù)的性質(zhì)小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。三小數(shù)點位置的移動引起小數(shù)大小的變化1小數(shù)點向右移動一位,就擴大到原來的10倍;小數(shù)點向右移動兩位,就擴大到原來的100倍;小數(shù)點向右移動三位,就擴大到原來的1000倍2小數(shù)點向左移動一位,就縮小到原來的;小數(shù)點向左移動兩位,就縮小到原來的;小數(shù)點向左移動三位,就縮小到原來的3小數(shù)點向左移或者向右移位數(shù)不夠時,要用0補足位。四分數(shù)的根本性質(zhì)分數(shù)的根本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同的數(shù)零除外,分數(shù)的大小不變。五分數(shù)與除法的關(guān)系1被除數(shù)÷除數(shù)=被除數(shù)/除數(shù)2因為零不能作

18、除數(shù),所以分數(shù)的分母不能為零。3被除數(shù)相當于分子,除數(shù)相當于分母。四、運算的意義一整數(shù)四那么運算1整數(shù)加法:把兩個數(shù)合并成一個數(shù)的運算叫做加法。在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是局部數(shù),和是總數(shù)。加數(shù)+加數(shù)=和加數(shù)=和另一個加數(shù)2整數(shù)減法:兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。在減法里,的和叫做被減數(shù),的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是局部數(shù)。加法和減法互為逆運算。被減數(shù)-減數(shù)=差被減數(shù)=差+減數(shù)減數(shù)=被減數(shù)-差3整數(shù)乘法:求幾個相同加數(shù)的和的簡便運算叫做乘法。在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。在

19、乘法里,0和任何數(shù)相乘都得0.1和任何數(shù)相乘都的任何數(shù)。因數(shù)×因數(shù)=積因數(shù)=積÷另一個因數(shù)4整數(shù)除法:兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。在除法里,的積叫做被除數(shù),的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。乘法和除法互為逆運算。在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。被除數(shù)÷除數(shù)=商除數(shù)=被除數(shù)÷商被除數(shù)=商×除數(shù)二小數(shù)四那么運算1小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。2小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。兩個加數(shù)的和與其中的一

20、個加數(shù),求另一個加數(shù)的運算.3小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾是多少。4小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義相同,就是兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。5乘方平方:求幾個相同因數(shù)的積的運算叫做乘方。例如33=3×3=32三分數(shù)四那么運算1分數(shù)加法:分數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。2分數(shù)減法:分數(shù)減法的意義與整數(shù)減法的意義相同。兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。3分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是

21、求幾個相同加數(shù)和的簡便運算。4乘積是1的兩個數(shù)叫做互為倒數(shù)。5分數(shù)除法:分數(shù)除法的意義與整數(shù)除法的意義相同。就是兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。四運算定律1加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a。2加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加,它們的和不變,即a+b+c=a+b+c。3乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即a×b=b×a。4乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即a

22、15;b×c=a×b×c。5乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即a+b×c=a×c+b×c。6減法的性質(zhì):從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-b+c。五運算法那么1整數(shù)加法計算法那么:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。2整數(shù)減法計算法那么:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。3整數(shù)乘法計算法那么:先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上

23、的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。4整數(shù)除法計算法那么:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補0占位。每次除得的余數(shù)要小于除數(shù)。5.小數(shù)乘法法那么:先按照整數(shù)乘法的計算法那么算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用0補足。6除數(shù)是整數(shù)的小數(shù)除法計算法那么:先按照整數(shù)除法的法那么去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添0,再繼續(xù)除。7除數(shù)是小數(shù)的除法

24、計算法那么:先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位位數(shù)不夠的補0,然后按照除數(shù)是整數(shù)的除法法那么進行計算。8同分母分數(shù)加減法計算方法:同分母分數(shù)相加減,只把分子相加減,分母不變。9異分母分數(shù)加減法計算方法:先通分,然后按照同分母分數(shù)加減法的的法那么進行計算。10帶分數(shù)加減法的計算方法:整數(shù)局部和分數(shù)局部分別相加減,再把所得的數(shù)合并起來。11分數(shù)乘法的計算法那么:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。12分數(shù)除法的計算法那么:甲數(shù)除以乙數(shù)0除外,等于甲數(shù)乘乙數(shù)的倒數(shù)。六運算順序1小數(shù)四那么運算的運算順序

25、和整數(shù)四那么運算順序相同。2分數(shù)四那么運算的運算順序和整數(shù)四那么運算順序相同。3沒有括號的混合運算:同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。4有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括號外面的。5第一級運算:加法和減法叫做第一級運算。6第二級運算:乘法和除法叫做第二級運算。五、應用一整數(shù)和小數(shù)的應用1簡單應用題1簡單應用題:只含有一種根本數(shù)量關(guān)系,或用一步運算解答的應用題,通常叫做簡單應用題。2解題步驟:a審題理解題意:了解應用題的內(nèi)容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。b

26、選擇算法和列式計算:這是解容許用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四那么運算的含義,分析數(shù)量關(guān)系,確定算法,進行解答并標明正確的單位名稱。c檢驗:就是根據(jù)應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。2復合應用題1有兩個或兩個以上的根本數(shù)量關(guān)系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。2含有三個條件的兩步計算的應用題。求比兩個數(shù)的和多少幾個數(shù)的應用題。比擬兩數(shù)差與倍數(shù)關(guān)系的應用題。3含有兩個條件的兩步計算的應用題。兩數(shù)相差多少或倍數(shù)關(guān)系與其中一個數(shù),求兩個數(shù)的和或差。兩數(shù)之和與其中一個

27、數(shù),求兩個數(shù)相差多少或倍數(shù)關(guān)系。4解答連乘連除應用題。5解答三步計算的應用題。6解答小數(shù)計算的應用題:小數(shù)計算的加法、減法、乘法和除法的應用題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題方式都與正式應用題根本相同,只是在數(shù)或未知數(shù)中間含有小數(shù)。7解答加法應用題:a求總數(shù)的應用題:甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。b求比一個數(shù)多幾的數(shù)應用題:甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。8解答減法應用題:a求剩余的應用題:從數(shù)中去掉一局部,求剩下的局部。b求兩個數(shù)相差的多少的應用題:甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。c求比一個數(shù)少幾的數(shù)的應用題:甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,

28、求乙數(shù)是多少。9解答乘法應用題:a求相同加數(shù)和的應用題:相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。b求一個數(shù)的幾倍是多少的應用題:一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。10解答除法應用題:a把一個數(shù)平均分成幾份,求每一份是多少的應用題:一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是多少。b求一個數(shù)里包含幾個另一個數(shù)的應用題:一個數(shù)和每份是多少,求可以分成幾份。c求一個數(shù)是另一個數(shù)的的幾倍的應用題:甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。d一個數(shù)的幾倍是多少,求這個數(shù)的應用題。11常見的數(shù)量關(guān)系:總價=單價×數(shù)量路程=速度×時間工作總量=工作時間×工效總產(chǎn)量=

29、單產(chǎn)量×數(shù)量3典型應用題具有獨特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。1平均數(shù)問題:平均數(shù)是等分除法的開展。解題關(guān)鍵:在于確定總數(shù)量和與之相對應的總份數(shù)。算術(shù)平均數(shù):幾個不相等的同類量和與之相對應的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。加權(quán)平均數(shù):兩個以上假設干份的平均數(shù),求總平均數(shù)是多少。數(shù)量關(guān)系式局部平均數(shù)×權(quán)數(shù)的總和÷權(quán)數(shù)的和=加權(quán)平均數(shù)。差額平均數(shù):是把各個大于或小于標準數(shù)的局部之和被總份數(shù)均分,求的是標準數(shù)與各數(shù)相差之和的平均數(shù)。數(shù)量關(guān)系式:大數(shù)小數(shù)÷2=小數(shù)應得數(shù)最大數(shù)與各數(shù)之

30、差的和÷總份數(shù)=最大數(shù)應給數(shù)最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應得數(shù)。例:一輛汽車以每小時100千米的速度從甲地開往乙地,又以每小時60千米的速度從乙地開往甲地。求這輛車的平均速度。分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為1,那么汽車行駛的總路程為2,從甲地到乙地的速度為100,所用的時間為,汽車從乙地到甲地速度為60千米,所用的時間是,汽車共行的時間為+=,汽車的平均速度為2÷=75千米2歸一問題:相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。根據(jù)求單一量的步驟的多少,歸一問

31、題可以分為一次歸一問題,兩次歸一問題。根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。一次歸一問題,用一步運算就能求出單一量的歸一問題。又稱單歸一。兩次歸一問題,用兩步運算就能求出單一量的歸一問題。又稱雙歸一。正歸一問題:用等分除法求出單一量之后,再用乘法計算結(jié)果的歸一問題。反歸一問題:用等分除法求出單一量之后,再用除法計算結(jié)果的歸一問題。解題關(guān)鍵:從的一組對應量中用等分除法求出一份的數(shù)量單一量,然后以它為標準,根據(jù)題目的要求算出結(jié)果。數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量正歸一總數(shù)量÷單一量=份數(shù)反歸一例:一個織布工人,在七月份織布4774米,

32、照這樣計算,織布6930米,需要多少天?分析:必須先求出平均每天織布多少米,就是單一量。6930÷4774÷31=45天3歸總問題:是單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量或單位數(shù)量的個數(shù),通過求總數(shù)量求得單位數(shù)量的個數(shù)或單位數(shù)量。特點:兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。數(shù)量關(guān)系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量。例:修一條水渠,原方案每天修800米,6天修完。實際4天修完,每天修了多少米?分析:

33、因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做歸總問題。不同之處是歸一先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。800×6÷4=1200米4和差問題:大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應用題叫做和差問題。解題關(guān)鍵:是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和或兩個小數(shù)的和,然后再求另一個數(shù)。解題規(guī)律:和差÷2=大數(shù)大數(shù)差=小數(shù)和差÷2=小數(shù)和小數(shù)=大數(shù)例:某加工廠甲班和乙班共有工人94人,因工作需要臨時從乙班調(diào)46人到甲班工作,這時乙班比甲班人數(shù)少12人,求原來甲班和乙班各有多少人?分析:從乙班調(diào)46人到甲

34、班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成2個乙班,即9412,由此得到現(xiàn)在的乙班是9412÷2=41人,乙班在調(diào)出46人之前應該為41+46=87人,甲班為9487=7人5和倍問題:兩個數(shù)的和及它們之間的倍數(shù)關(guān)系,求兩個數(shù)各是多少的應用題,叫做和倍問題。解題關(guān)鍵:找準標準數(shù)即1倍數(shù)一般說來,題中說是誰的幾倍,把誰就確定為標準數(shù)。求出倍數(shù)和之后,再求出標準的數(shù)量是多少。根據(jù)另一個數(shù)也可能是幾個數(shù)與標準數(shù)的倍數(shù)關(guān)系,再去求另一個數(shù)或幾個數(shù)的數(shù)量。解題規(guī)律:和÷倍數(shù)和=標準數(shù)標準數(shù)×倍數(shù)=另一個數(shù)例::汽車運輸場有大小貨車115輛,大貨車比小貨車的5倍多7輛,運輸場有大貨

35、車和小汽車各有多少輛?分析:大貨車比小貨車的5倍還多7輛,這7輛也在總數(shù)115輛內(nèi),為了使總數(shù)與5+1倍對應,總車輛數(shù)應115-7輛。列式為115-7÷5+1=18輛,18×5+7=97輛6差倍問題:兩個數(shù)的差,及兩個數(shù)的倍數(shù)關(guān)系,求兩個數(shù)各是多少的應用題。解題規(guī)律:兩個數(shù)的差÷倍數(shù)1=標準數(shù)標準數(shù)×倍數(shù)=另一個數(shù)。例:甲乙兩根繩子,甲繩長63米,乙繩長29米,兩根繩剪去同樣的長度,結(jié)果甲所剩的長度是乙繩長的3倍,甲乙兩繩所剩長度各多少米?各減去多少米?分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的3倍,實比乙繩多3-1倍,以乙繩的長度

36、為標準數(shù)。列式63-29÷3-1=17米乙繩剩下的長度,17×3=51米甲繩剩下的長度,29-17=12米剪去的長度。7行程問題:關(guān)于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。解題關(guān)鍵及規(guī)律:同時同地相背而行:路程=速度和×時間。同時相向而行:相遇時間=速度和×時間同時同向而行速度慢的在前,快的在后:追及時間=路程速度差。同時同地同向而行速度慢的在后,快的在前:路程=速度差×時間。例:甲在乙的后面28千米,兩

37、人同時同向而行,甲每小時行16千米,乙每小時行9千米,甲幾小時追上乙?分析:甲每小時比乙多行16-9千米,也就是甲每小時可以追近乙16-9千米,這是速度差。甲在乙的后面28千米追擊路程,28千米里包含著幾個16-9千米,也就是追擊所需要的時間。列式28÷16-9=4小時8流水問題:一般是研究船在流水中航行的問題。它是行程問題中比擬特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。船速:船在靜水中航行的速度。水速:水流動的速度。順水速度:船順流航行的速度。逆水速度:船逆流航行的速度。順速=船速水速逆速=船速水速解題關(guān)鍵:因為順流速度是船速與水速的和,逆

38、流速度是船速與水速的差,所以流水問題當作和差問題解答。解題時要以水流為線索。解題規(guī)律:船行速度=順水速度+逆流速度÷2流水速度=順流速度逆流速度÷2路程=順流速度×順流航行所需時間路程=逆流速度×逆流航行所需時間例:一只輪船從甲地開往乙地順水而行,每小時行28千米,到乙地后,又逆水航行,回到甲地。逆水比順水多行2小時,水速每小時4千米。求甲乙兩地相距多少千米?分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。順水速度和水流速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用2小時,抓住這一點

39、,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為284×2=20千米20×2=40千米40÷4×2=5小時28×5=140千米。9復原問題:某未知數(shù),經(jīng)過一定的四那么運算后所得的結(jié)果,求這個未知數(shù)的應用題,我們叫做復原問題。解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。解題規(guī)律:從最后結(jié)果出發(fā),采用與原題中相反的運算逆運算方法,逐步推導出原數(shù)。根據(jù)原題的運算順序列出數(shù)量關(guān)系,然后采用逆運算的方法計算推導出原數(shù)。解答復原問題時注意觀察運算的順序。假設需要先算加減法,后算乘除法時別忘記寫括號。例:某小學三年級四個班共有學

40、生168人,如果四班調(diào)3人到三班,三班調(diào)6人到二班,二班調(diào)6人到一班,一班調(diào)2人到四班,那么四個班的人數(shù)相等,四個班原有學生多少人?分析:當四個班人數(shù)相等時,應為168÷4,以四班為例,它調(diào)給三班3人,又從一班調(diào)入2人,所以四班原有的人數(shù)減去3再加上2等于平均數(shù)。四班原有人數(shù)列式為168÷4-2+3=43人一班原有人數(shù)列式為168÷4-6+2=38人;二班原有人數(shù)列式為168÷4-6+6=42人三班原有人數(shù)列式為168÷4-3+6=45人。10植樹問題:這類應用題是以植樹為內(nèi)容。但凡研究總路程、株距、段數(shù)、棵樹四種數(shù)量關(guān)系的應用題,叫做植樹問題

41、。解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按根本公式進行計算。解題規(guī)律:沿線段植樹棵樹=段數(shù)+1棵數(shù)=總路程÷棵距+1棵距=總路程÷棵數(shù)-1總路程=棵距×棵數(shù)-1沿周長植樹棵數(shù)=總路程÷棵距棵距=總路程÷棵數(shù)總路程=棵距×棵數(shù)例:沿公路一旁埋電線桿301根,每相鄰的兩根的間距是50米。后來全部改裝,只埋了201根。求改裝后每相鄰兩根的間距。分析:此題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為50×301-1÷201-1=75米11盈虧問題:是在等分除法的

42、根底上開展起來的。他的特點是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次缺乏或兩次都有余,或兩次都缺乏,所余和缺乏的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。解題關(guān)鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差也稱總差額,用前一個差去除后一個差,就得到分配者的數(shù),進而再求得物品數(shù)。解題規(guī)律:總差額÷每人差額=人數(shù)總差額的求法可以分為以下四種情況:第一次多余,第二次缺乏,總差額=多余+缺乏第一次正好,第二次多余或缺乏,總差額=多余或缺乏第一次多余,第二次也多余,總差額=大多余-小多余第一次缺乏,第二次

43、也缺乏,總差額=大缺乏-小缺乏例:參加美術(shù)小組的同學,每個人分的相同的支數(shù)的色筆,如果小組10人,那么多25支,如果小組有12人,色筆多余5支。求每人分得幾支?共有多少支色鉛筆?分析:每個同學分到的色筆相等。這個活動小組有12人,比10人多2人,而色筆多出了25-5=20支,2個人多出20支,一個人分得10支。列式為25-5÷12-10=10支10×12+5=125支。12年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應用題被稱為年齡問題。解題關(guān)鍵:年齡問題與和差、和倍、差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,

44、年齡問題是一種差不變的問題,解題時,要善于利用差不變的特點。例:父親48歲,兒子21歲。問幾年前父親的年齡是兒子的4倍?分析:父子的年齡差為48-21=27歲。由于幾年前父親年齡是兒子的4倍,可知父子年齡的倍數(shù)差是4-1倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的4倍。列式為:2148-21÷4-1=12年13雞兔問題:雞兔的總頭數(shù)和總腿數(shù)。求雞和兔各多少只的一類應用題。通常稱為雞兔問題又稱雞兔同籠問題解題關(guān)鍵:解答雞兔問題一般采用假設法,假設全是一種動物如全是雞或全是兔,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。解題規(guī)律:總腿數(shù)雞腿數(shù)×總頭數(shù)&

45、#247;一只雞兔腿數(shù)的差=兔子只數(shù)兔子只數(shù)=總腿數(shù)-2×總頭數(shù)÷2如果假設全是兔子,可以有下面的式子:雞的只數(shù)=4×總頭數(shù)-總腿數(shù)÷2兔的頭數(shù)=總頭數(shù)-雞的只數(shù)例:雞兔同籠共50個頭,170條腿。問雞兔各有多少只?兔子只數(shù)170-2×50÷2=35只雞的只數(shù)50-35=15只二分數(shù)和百分數(shù)的應用1分數(shù)加減法應用題:分數(shù)加減法的應用題與整數(shù)加減法的應用題的結(jié)構(gòu)、數(shù)量關(guān)系和解題方法根本相同,所不同的只是在數(shù)或未知數(shù)中含有分數(shù)。2分數(shù)乘法應用題:是指一個數(shù),求它的幾分之幾是多少的應用題。特征:單位1的量和分率,求與分率所對應的實際數(shù)量。解

46、題關(guān)鍵:準確判斷單位1的量。找準要求問題所對應的分率,然后根據(jù)一個數(shù)乘分數(shù)的意義正確列式。3分數(shù)除法應用題:求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾是多少。特征:一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾。一個數(shù)是比擬量,另一個數(shù)是標準量。求分率或百分率,也就是求他們的倍數(shù)關(guān)系。解題關(guān)鍵:從問題入手,搞清把誰看作標準的數(shù)也就是把誰看作了單位一,誰和單位一的量作比擬,誰就作被除數(shù)。甲是乙的幾分之幾百分之幾:甲是比擬量,乙是標準量,用甲除以乙。甲比乙多或少幾分之幾百分之幾:甲減乙比乙多或少幾分之幾或百分之幾。關(guān)系式甲數(shù)減乙數(shù)/乙數(shù)或甲數(shù)減乙數(shù)/甲數(shù)。一個數(shù)的幾分之幾或百分之幾,求這個數(shù)

47、。特征:一個實際數(shù)量和它相對應的分率,求單位1的量。解題關(guān)鍵:準確判斷單位1的量把單位1的量看成x根據(jù)分數(shù)乘法的意義列方程,或者根據(jù)分數(shù)除法的意義列算式,但必須找準和分率相對應的實際數(shù)量。4出勤率發(fā)芽率=發(fā)芽種子數(shù)/試驗種子數(shù)×100%小麥的出粉率=面粉的重量/小麥的重量×100%產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)×100%職工的出勤率=實際出勤人數(shù)/應出勤人數(shù)×100%5工程問題:是分數(shù)應用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時間三個數(shù)量之間相互關(guān)系的一種應用題。解題關(guān)鍵:把工作總量看作單位1,工作效率就是工作

48、時間的倒數(shù),然后根據(jù)題目的具體情況,靈活運用公式。數(shù)量關(guān)系式:工作總量=工作效率×工作時間工作效率=工作總量÷工作時間工作時間=工作總量÷工作效率工作總量÷工作效率和=合作時間6納稅納稅就是把根據(jù)國家各種稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收入的一局部繳納給國家。繳納的稅款叫應納稅款。應納稅額與各種收入的銷售額、營業(yè)額、應納稅所得額的比率叫做稅率。*利息存入銀行的錢叫做本金。取款時銀行多支付的錢叫做利息。利息與本金的比值叫做利率。利息=本金×利率×時間度量衡一、長度一什么是長度長度是一維空間的度量。二長度常用單位公里km米m分米

49、dm厘米cm毫米mm微米um三單位之間的換算1毫米1000微米1厘米10毫米1分米10厘米1米1000毫米1千米1000米二、面積一什么是面積面積,就是物體所占平面的大小。對立體物體的外表的多少的測量一般稱外表積。二常用的面積單位平方毫米平方厘米平方分米平方米平方千米三面積單位的換算1平方厘米100平方毫米1平方分米=100平方厘米1平方米100平方分米1公傾10000平方米1平方公里100公頃三、體積和容積一什么是體積、容積體積,就是物體所占空間的大小。容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。二常用單位1體積單位立方米立方分米立方厘米2容積單位升毫升三單位換算1體積單

50、位1立方米=1000立方分米1立方分米=1000立方厘米2容積單位1升=1000毫升1升=1立方米1毫升=1立方厘米四、質(zhì)量一什么是質(zhì)量質(zhì)量,就是表示表示物體有多重。二常用單位噸t千克kg克g三常用換算一噸=1000千克1千克=1000克五、時間一什么是時間是指有起點和終點的一段時間二常用單位世紀、年、月、日、時、分、秒三單位換算1世紀=100年1年=365天平年一年=366天閏年一、三、五、七、八、十、十二是大月大月有31天四、六、九、十一是小月小月小月有30天平年2月有28天閏年2月有29天1天=24小時1小時=60分一分=60秒六、貨幣一什么是貨幣貨幣是充當一切商品的等價物的特殊商品。貨

51、幣是價值的一般代表,可以購置任何別的商品。二常用單位元角分三單位換算1元=10角1角=10分代數(shù)初步知識一、用字母表示數(shù)一用字母表示數(shù)的意義和作用用字母表示數(shù),可以把數(shù)量關(guān)系簡明的表達出來,同時也可以表示運算的結(jié)果。二用字母表示常見的數(shù)量關(guān)系、運算定律和性質(zhì)、幾何形體的計算公式1常見的數(shù)量關(guān)系路程用s表示,速度v用表示,時間用t表示,三者之間的關(guān)系:s=vtv=s/tt=s/v總價用a表示,單價用b表示,數(shù)量用c表示,三者之間的關(guān)系:a=bcb=a/cc=a/b2運算定律和性質(zhì)加法交換律:a+b=b+a加法結(jié)合律:a+b+c=a+b+c乘法交換律:ab=ba乘法結(jié)合律:abc=abc乘法分配律

52、:a+bc=ac+bc減法的性質(zhì):a-b+c=a-b-c3用字母表示幾何形體的公式長方形的長用a表示,寬用b表示,周長用c表示,面積用S表示。C=2a+bS=ab正方形的邊長a用表示,周長用c表示,面積用S表示。C=4aS=a²平行四邊形的底a用表示,高用h表示,面積用S表示。S=ah三角形的底用a表示,高用h表示,面積用S表示。S=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用S表示。S=a+bh/2S=mh圓的半徑用r表示,直徑用d表示,周長用c表示,面積用S表示。C=d=2rS=r²扇形的半徑用r表示,n表示圓心角的度數(shù),面積用S表示。S

53、=nr²/360長方體的長用a表示,寬用b表示,高用h表示,外表積用S表示,體積用V表示。V=shS=2ab+ah+bhV=abh正方體的棱長用a表示,底面周長C用表示,底面積用S表示,體積用V表示.S=6a²V=a³圓柱的高用h表示,底面周長用C表示,底面積用S表示,體積用V表示.S側(cè)=chS表=S側(cè)+2S底V=sh圓錐的高用h表示,底面積用S表示,體積用V表示.V=Sh/3三用字母表示數(shù)的寫法數(shù)字和字母、字母和字母相乘時,乘號可以記作.,或者省略不寫,數(shù)字要寫在字母的前面。當1與任何字母相乘時,1省略不寫。在一個問題中,同一個字母表示同一個量,不同的量用不同的

54、字母表示。用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,如果式子中有加號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。四將數(shù)值代入式子求值把具體的數(shù)代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。二、簡易方程方程和方程的解一方程:含有未知數(shù)的等式叫做方程。注意:方程是等式,又含有未知數(shù),兩者缺一不可。方程和算術(shù)式不同。算術(shù)式是一個式子,它由運算符號和數(shù)組成,它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只有當未知數(shù)為特定的數(shù)值時,方程才成立。二方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。三、解方程解方程,求方程的解的過程叫做解方程。四、列方程解應用題一列方程解應用題的意義用方程式去解容許用題求得應用題的未知量的方法。二列方程解容許用題的步驟弄清題意,確定未知數(shù)并用x表示;找出題中的數(shù)量之間的相等關(guān)系;列方程,解方程;檢查或驗算,寫出答案。三列方程解應用題的方法綜合法:先把應用題中數(shù)量和所設未知數(shù)量列成有關(guān)的代數(shù)式,再找出它們之間的等量關(guān)系,進而列出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論