211二次根式(第一課時(shí))教案新人教版九年級(jí)上_第1頁
211二次根式(第一課時(shí))教案新人教版九年級(jí)上_第2頁
免費(fèi)預(yù)覽已結(jié)束,剩余4頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第二一章二次根式教材內(nèi)容1本單元教學(xué)的主要內(nèi)容:二次根式的概念;二次根式的加減;二次根式的乘除;最簡(jiǎn)二次根式.2.本單元在教材中的地位和作用:二次根式是在學(xué)完了八年級(jí)下冊(cè)第十七章反比例正函數(shù)、第十八章勾股定理及其應(yīng)用等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識(shí)的基礎(chǔ).教學(xué)目標(biāo)1.知識(shí)與技能(1)理解二次根式的概念.(2)理解ja(a0)是一個(gè)非負(fù)數(shù),(苗)2=a(a0),后=a(a0).(3) 掌握 苗/b=s/ab(a0,b0),fab = 4a血;(4)了解最簡(jiǎn)二次根式的概念并靈活運(yùn)用它們對(duì)二次根式進(jìn)行加減.2.過程與方法(1)先提出問題, 讓學(xué)生探討、分析問題,師生共同歸納,得

2、出概念.?再對(duì)概念的內(nèi)涵進(jìn)行分析,得出幾個(gè)重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的計(jì)算和化簡(jiǎn).(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,?并運(yùn)用規(guī)定進(jìn)行計(jì)算.(3) 利用逆向思維,?得出二次根式的乘(除)法規(guī)定的逆向等式并運(yùn)用它進(jìn)行化簡(jiǎn).(4)通過分析前面的計(jì)算和化簡(jiǎn)結(jié)果,抓住它們的共同特點(diǎn),?給出最簡(jiǎn)二次根式的 概念.利用最簡(jiǎn)二次根式的概念,來對(duì)相同的二次根式進(jìn)行合并,達(dá)到對(duì)二次根式進(jìn)行計(jì)算和化簡(jiǎn)的目的.3.情感、態(tài)度與價(jià)值觀通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過探索 二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)

3、現(xiàn)問題的能力.教學(xué)重點(diǎn)1.二次根式a(a0)的內(nèi)涵.a(a0) 是一 一個(gè)非負(fù)數(shù);(a)2=a(a0);,b0),(a0,b0).a2=a(a0)?及其運(yùn)用.2.二次根式乘除法的規(guī)定及其運(yùn)用.3.最簡(jiǎn)二次根式的概念.4.二次根式的加減運(yùn)算.教學(xué)難點(diǎn)1對(duì).a(a0)是一個(gè)非負(fù)數(shù)的理解;對(duì)等式()2=a(a0)及=a(a 0)的理解及應(yīng)用.2二次根式的乘法、除法的條件限制.3.利用最簡(jiǎn)二次根式的概念把一個(gè)二次根式化成最簡(jiǎn)二次根式.教學(xué)關(guān)鍵1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點(diǎn),突破難點(diǎn).2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計(jì)算的能力,?培養(yǎng)學(xué)生一絲不茍的科學(xué)精神.單元課

4、時(shí)劃分本單元教學(xué)時(shí)間約需11課時(shí),具體分配如下:21.1二次根式3課時(shí)21.2二次根式的乘法3課時(shí)21.3二次根式的加減3課時(shí)教學(xué)活動(dòng)、習(xí)題課、小結(jié)2課時(shí)21 . 1 二次根式第一課時(shí)教學(xué)內(nèi)容二次根式的概念及其運(yùn)用教學(xué)目標(biāo)理解二次根式的概念,并利用a(a0)的意義解答具體題目.提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實(shí)際問題.教學(xué)重難點(diǎn)關(guān)鍵1.重點(diǎn):形如,a(a0)的式子叫做二次根式的概念;2.難點(diǎn)與關(guān)鍵:利用ja(a0)”解決具體問題.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動(dòng))請(qǐng)同學(xué)們獨(dú)立完成下列三個(gè)問題:3問題1:已知反比例函數(shù)y=-,那么它的圖象在第一象限橫、?縱坐標(biāo)相等的點(diǎn)的坐x標(biāo)是_ .問題2

5、:如圖,在直角三角形ABC中,AC=- BC=1,/C=90,那么AB邊的長(zhǎng)是問題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_.老師點(diǎn)評(píng):?jiǎn)栴}1:橫、縱坐標(biāo)相等,即x=y,所以x2=3.因?yàn)辄c(diǎn)在第一象限,所以x=.3,所 以所求點(diǎn)的坐標(biāo)(、 、3,. 3).問題2:由勾股定理得AB=10問題3:由方差的概念得4.二、探索新知很明顯,3、,10、4,都是一些正數(shù)的算術(shù)平方根像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式因此,一般地,我們把形如,a(a0)?的式子叫做二次根式,“”稱為二次根號(hào).(學(xué)生活動(dòng))議一議:1-1有算術(shù)平方根嗎?

6、20的算術(shù)平方根是多少?3.當(dāng)a0)、.0、xA42、-2、-、,廠y(X0,y?0).x + y分析:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“曠”;第二,被開方數(shù)是正數(shù)或0.解:二次根式有:42、丘(x0)、70、-、Jx + y(X0,y0);不是二次根式的有:例2.當(dāng)x是多少時(shí), 3x-1在實(shí)數(shù)范圍內(nèi)有意義?分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-10,3x-1才能有意義.1解:由3x-10,得:x -3當(dāng)x1時(shí),3x -1在實(shí)數(shù)范圍內(nèi)有意義.3三、鞏固練習(xí)教材P練習(xí)1、2、3.四、應(yīng)用拓展1例3.當(dāng)x是多少時(shí),2x 3+在實(shí)數(shù)范圍內(nèi)有意義?x+1分析:要使.

7、2x3+亠在實(shí)數(shù)范圍內(nèi)有意義,必須同時(shí)滿足、2x 3中的0和x+1中的x+1工0.解:依題意,得一3由得:x-2由得:x工-13j_ 1當(dāng)x 且x豐-1時(shí),.2x 3+-在實(shí)數(shù)范圍內(nèi)有意義.2x+1例4(1)已知y,2 - x+ ,x-2+5,求-的值.(答案:2)y(2)若、n+、匸1=0,求a2004+b2004的值.(答案:2 )5五、歸納小結(jié)(學(xué)生活動(dòng),老師點(diǎn)評(píng))本節(jié)課要掌握:1.形如,a(a0)的式子叫做二次根式,一 ”稱為二次根號(hào).2.要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù).六、布置作業(yè)1.教材P8復(fù)習(xí)鞏固1、綜合應(yīng)用5.2.選用課時(shí)作業(yè)設(shè)計(jì).第一課時(shí)作業(yè)設(shè)計(jì)一、

8、選擇題1.下列式子中,是二次根式的是()A. - J B.37C .、X D.x2.下列式子中,不是二次根式的是()_ _ 1A.4B.16C.8D.x3.已知一個(gè)正方形的面積是5,那么它的邊長(zhǎng)是()二、 填空題1.形如_ 的式子叫做二次根式.2.面積為a的正方形的邊長(zhǎng)為_ .3負(fù)數(shù)_ 平方根.三、 綜合提高題1某工廠要制作一批體積為1卅的產(chǎn)品包裝盒,其高為0.2m,按設(shè)計(jì)需要,?底面應(yīng) 做成正方形,試問底面邊長(zhǎng)應(yīng)是多少?2當(dāng)x是多少時(shí),2x3+x2在實(shí)數(shù)范圍內(nèi)有意義?3.若、3-x + . x-3有意義,則 三.4.使式子二5)2有意義的未知數(shù)x有()個(gè).A. 0 B.1 C.2 D.無數(shù)5.已知a、b為實(shí)數(shù),且,a -5+2.10-2a=b+4,求a、b的值.第一課時(shí)作業(yè)設(shè)計(jì)答案:一、1.A 2.D 3.B二、1.,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論