新課標(biāo)人教版八年級(jí)數(shù)學(xué)下冊(cè)教案_第1頁(yè)
新課標(biāo)人教版八年級(jí)數(shù)學(xué)下冊(cè)教案_第2頁(yè)
新課標(biāo)人教版八年級(jí)數(shù)學(xué)下冊(cè)教案_第3頁(yè)
新課標(biāo)人教版八年級(jí)數(shù)學(xué)下冊(cè)教案_第4頁(yè)
新課標(biāo)人教版八年級(jí)數(shù)學(xué)下冊(cè)教案_第5頁(yè)
已閱讀5頁(yè),還剩72頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第十六章 二次根式161 二次根式第一課時(shí) 教學(xué)內(nèi)容 二次根式的概念及其運(yùn)用 教學(xué)目標(biāo) 理解二次根式的概念,并利用(a0)的意義解答具體題目 提出問(wèn)題,根據(jù)問(wèn)題給出概念,應(yīng)用概念解決實(shí)際問(wèn)題 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):形如(a0)的式子叫做二次根式的概念; 2難點(diǎn)與關(guān)鍵:利用“(a0)”解決具體問(wèn)題 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們獨(dú)立完成下列三個(gè)問(wèn)題: 問(wèn)題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點(diǎn)的坐標(biāo)是_問(wèn)題2:如圖,在直角三角形ABC中,AC=3,BC=1,C=90°,那么AB邊的長(zhǎng)是_ 問(wèn)題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、

2、7、8,那么甲這次射擊的方差是S2,那么S=_ 老師點(diǎn)評(píng):?jiǎn)栴}1:橫、縱坐標(biāo)相等,即x=y,所以x2=3因?yàn)辄c(diǎn)在第一象限,所以x=,所以所求點(diǎn)的坐標(biāo)(,) 問(wèn)題2:由勾股定理得AB= 問(wèn)題3:由方差的概念得S= . 二、探索新知 很明顯、,都是一些正數(shù)的算術(shù)平方根像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式因此,一般地,我們把形如(a0)的式子叫做二次根式,“”稱為二次根號(hào) (學(xué)生活動(dòng))議一議: 1-1有算術(shù)平方根嗎? 20的算術(shù)平方根是多少? 3當(dāng)a<0,有意義嗎? 老師點(diǎn)評(píng):(略) 例1下列式子,哪些是二次根式,哪些不是二次根式:、(x>0)、-、(x0,y0) 分析

3、:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“”;第二,被開方數(shù)是正數(shù)或0 解:二次根式有:、(x>0)、-、(x0,y0);不是二次根式的有:、 例2當(dāng)x是多少時(shí),在實(shí)數(shù)范圍內(nèi)有意義? 分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-10,才能有意義 解:由3x-10,得:x 當(dāng)x時(shí),在實(shí)數(shù)范圍內(nèi)有意義 三、鞏固練習(xí) 教材P5練習(xí)1、2、3 四、應(yīng)用拓展 例3當(dāng)x是多少時(shí),+在實(shí)數(shù)范圍內(nèi)有意義? 分析:要使+在實(shí)數(shù)范圍內(nèi)有意義,必須同時(shí)滿足中的0和中的x+10 解:依題意,得 由得:x- 由得:x-1 當(dāng)x-且x-1時(shí),+在實(shí)數(shù)范圍內(nèi)有意義例4(1)已知y=+5,求的值

4、(答案:2)(2)若+=0,求a2004+b2004的值(答案:) 五、歸納小結(jié)(學(xué)生活動(dòng),老師點(diǎn)評(píng)) 本節(jié)課要掌握: 1形如(a0)的式子叫做二次根式,“”稱為二次根號(hào) 2要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù) 六、布置作業(yè) 1教材P8復(fù)習(xí)鞏固1、綜合應(yīng)用5 16.1 二次根式第二課時(shí) 教學(xué)內(nèi)容 1(a0)是一個(gè)非負(fù)數(shù); 2()2=a(a0) 教學(xué)目標(biāo) 理解(a0)是一個(gè)非負(fù)數(shù)和()2=a(a0),并利用它們進(jìn)行計(jì)算和化簡(jiǎn) 通過(guò)復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a0)是一個(gè)非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a0);最后運(yùn)用結(jié)論嚴(yán)謹(jǐn)解題 教學(xué)重難點(diǎn)

5、關(guān)鍵 1重點(diǎn):(a0)是一個(gè)非負(fù)數(shù);()2=a(a0)及其運(yùn)用 2難點(diǎn)、關(guān)鍵:用分類思想的方法導(dǎo)出(a0)是一個(gè)非負(fù)數(shù);用探究的方法導(dǎo)出()2=a(a0) 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))口答 1什么叫二次根式? 2當(dāng)a0時(shí),叫什么?當(dāng)a<0時(shí),有意義嗎? 老師點(diǎn)評(píng)(略) 二、探究新知 議一議:(學(xué)生分組討論,提問(wèn)解答) (a0)是一個(gè)什么數(shù)呢? 老師點(diǎn)評(píng):根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出 (a0)是一個(gè)非負(fù)數(shù) 做一做:根據(jù)算術(shù)平方根的意義填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老師點(diǎn)評(píng):是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,

6、是一個(gè)平方等于4的非負(fù)數(shù),因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a0) 例1 計(jì)算 1()2 2(3)2 3()2 4()2 分析:我們可以直接利用()2=a(a0)的結(jié)論解題解:()2 =,(3)2 =32·()2=32·5=45,()2=,()2= 三、鞏固練習(xí) 計(jì)算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、應(yīng)用拓展 例2 計(jì)算1()2(x0) 2()2 3()2 4()2分析:(1)因?yàn)閤0,所以x+1>0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-

7、12x+9=(2x)2-2·2x·3+32=(2x-3)20所以上面的4題都可以運(yùn)用()2=a(a0)的重要結(jié)論解題 解:(1)因?yàn)閤0,所以x+1>0 ()2=x+1 (2)a20,()2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 ,=a2+2a+1 (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又(2x-3)204x2-12x+90,()2=4x2-12x+9例3在實(shí)數(shù)范圍內(nèi)分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3分析:(略) 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:

8、 1(a0)是一個(gè)非負(fù)數(shù); 2()2=a(a0);反之:a=()2(a0) 六、布置作業(yè) 1教材P8 復(fù)習(xí)鞏固2(1)、(2) P9 7162 二次根式的乘除第一課時(shí) 教學(xué)內(nèi)容 ·(a0,b0),反之=·(a0,b0)及其運(yùn)用 教學(xué)目標(biāo) 理解·(a0,b0),=·(a0,b0),并利用它們進(jìn)行計(jì)算和化簡(jiǎn) 由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出·(a0,b0)并運(yùn)用它進(jìn)行計(jì)算;利用逆向思維,得出=·(a0,b0)并運(yùn)用它進(jìn)行解題和化簡(jiǎn) 教學(xué)重難點(diǎn)關(guān)鍵 重點(diǎn):·(a0,b0),=·(a0,b0)及它們的運(yùn)用 難點(diǎn):發(fā)現(xiàn)規(guī)律,導(dǎo)出&

9、#183;(a0,b0) 關(guān)鍵:要講清(a<0,b<0)=,如=或=× 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下列各題 1填空 (1)×=_,=_; (2)×=_,=_ (3)×=_,=_ 參考上面的結(jié)果,用“>、<或”填空 ×_,×_,×_ 2利用計(jì)算器計(jì)算填空 (1)×_,(2)×_, (3)×_,(4)×_, (5)×_ 老師點(diǎn)評(píng)(糾正學(xué)生練習(xí)中的錯(cuò)誤) 二、探索新知 (學(xué)生活動(dòng))讓3、4個(gè)同學(xué)上臺(tái)總結(jié)規(guī)律 老師點(diǎn)評(píng):(1)被開方數(shù)都是

10、正數(shù); (2)兩個(gè)二次根式的乘除等于一個(gè)二次根式,并且把這兩個(gè)二次根式中的數(shù)相乘,作為等號(hào)另一邊二次根式中的被開方數(shù) 一般地,對(duì)二次根式的乘法規(guī)定為 ·(a0,b0) 反過(guò)來(lái): =·(a0,b0) 例1計(jì)算 (1)× (2)× (3)× (4)× 分析:直接利用·(a0,b0)計(jì)算即可 解:(1)×=(2)×=(3)×=9(4)×= 例2 化簡(jiǎn)(1) (2) (3)(4) (5) 分析:利用=·(a0,b0)直接化簡(jiǎn)即可 解:(1)=×=3×4=12 (2

11、)=×=4×9=36 (3)=×=9×10=90 (4)=×=××=3xy (5)=×=3 三、鞏固練習(xí) (1)計(jì)算(學(xué)生練習(xí),老師點(diǎn)評(píng)) × 3×2 ·(2) 化簡(jiǎn): ; ; ; ; 教材P11練習(xí)全部 四、應(yīng)用拓展 例3判斷下列各式是否正確,不正確的請(qǐng)予以改正: (1) (2)×=4××=4×=4=8 解:(1)不正確 改正:=×=2×3=6 (2)不正確改正:×=×=4 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:(

12、1)·=(a0,b0),=·(a0,b0)及其運(yùn)用 六、布置作業(yè) 1課本P15 1,4,5,6(1)(2) 162 二次根式的乘除第二課時(shí) 教學(xué)內(nèi)容 =(a0,b>0),反過(guò)來(lái)=(a0,b>0)及利用它們進(jìn)行計(jì)算和化簡(jiǎn) 教學(xué)目標(biāo) 理解=(a0,b>0)和=(a0,b>0)及利用它們進(jìn)行運(yùn)算 利用具體數(shù)據(jù),通過(guò)學(xué)生練習(xí)活動(dòng),發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用逆向思維寫出逆向等式及利用它們進(jìn)行計(jì)算和化簡(jiǎn) 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):理解=(a0,b>0),=(a0,b>0)及利用它們進(jìn)行計(jì)算和化簡(jiǎn) 2難點(diǎn)關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定 教學(xué)

13、過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下列各題: 1寫出二次根式的乘法規(guī)定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_規(guī)律:_;_;_;_ 3利用計(jì)算器計(jì)算填空: (1)=_,(2)=_,(3)=_,(4)=_ 規(guī)律:_;_;_;_。 每組推薦一名學(xué)生上臺(tái)闡述運(yùn)算結(jié)果 (老師點(diǎn)評(píng)) 二、探索新知 剛才同學(xué)們都練習(xí)都很好,上臺(tái)的同學(xué)也回答得十分準(zhǔn)確,根據(jù)大家的練習(xí)和回答,我們可以得到: 一般地,對(duì)二次根式的除法規(guī)定:=(a0,b>0),反過(guò)來(lái),=(a0,b>0) 下面我們利用這個(gè)規(guī)定來(lái)計(jì)算和化簡(jiǎn)一些題目 例1計(jì)算:(1) (2

14、) (3) (4) 分析:上面4小題利用=(a0,b>0)便可直接得出答案解:(1)=2 (2)=×=2(3)=2(4)=2 例2化簡(jiǎn): (1) (2) (3) (4) 分析:直接利用=(a0,b>0)就可以達(dá)到化簡(jiǎn)之目的解:(1)= (2)= (3)= (4)= 三、鞏固練習(xí) 教材P14 練習(xí)1 四、應(yīng)用拓展 例3已知,且x為偶數(shù),求(1+x)的值分析:式子=,只有a0,b>0時(shí)才能成立因此得到9-x0且x-6>0,即6<x9,又因?yàn)閤為偶數(shù),所以x=8 解:由題意得,即 6<x9 x為偶數(shù) x=8 原式=(1+x) =(1+x) =(1+x)=

15、 當(dāng)x=8時(shí),原式的值=6 五、歸納小結(jié) 本節(jié)課要掌握=(a0,b>0)和=(a0,b>0)及其運(yùn)用 六、布置作業(yè) 1教材P15 習(xí)題212 2、7、8、916.2 二次根式的乘除第三課時(shí) 教學(xué)內(nèi)容 最簡(jiǎn)二次根式的概念及利用最簡(jiǎn)二次根式的概念進(jìn)行二次根式的化簡(jiǎn)運(yùn)算 教學(xué)目標(biāo) 理解最簡(jiǎn)二次根式的概念,并運(yùn)用它把不是最簡(jiǎn)二次根式的化成最簡(jiǎn)二次根式 通過(guò)計(jì)算或化簡(jiǎn)的結(jié)果來(lái)提煉出最簡(jiǎn)二次根式的概念,并根據(jù)它的特點(diǎn)來(lái)檢驗(yàn)最后結(jié)果是否滿足最簡(jiǎn)二次根式的要求 重難點(diǎn)關(guān)鍵 1重點(diǎn):最簡(jiǎn)二次根式的運(yùn)用 2難點(diǎn)關(guān)鍵:會(huì)判斷這個(gè)二次根式是否是最簡(jiǎn)二次根式 教學(xué)過(guò)程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們完成

16、下列各題(請(qǐng)三位同學(xué)上臺(tái)板書) 1計(jì)算(1),(2),(3) 老師點(diǎn)評(píng):=,=,= 2現(xiàn)在我們來(lái)看本章引言中的問(wèn)題:如果兩個(gè)電視塔的高分別是h1km,h2km,那么它們的傳播半徑的比是_ 它們的比是 二、探索新知 觀察上面計(jì)算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個(gè)特點(diǎn): 1被開方數(shù)不含分母; 2被開方數(shù)中不含能開得盡方的因數(shù)或因式 我們把滿足上述兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式 那么上題中的比是否是最簡(jiǎn)二次根式呢?如果不是,把它們化成最簡(jiǎn)二次根式 學(xué)生分組討論,推薦34個(gè)人到黑板上板書老師點(diǎn)評(píng):不是=. 例1(1) ; (2) ; (3) 例2如圖,在RtABC中,C=90

17、°,AC=2.5cm,BC=6cm,求AB的長(zhǎng) 解:因?yàn)锳B2=AC2+BC2 所以AB=6.5(cm) 因此AB的長(zhǎng)為6.5cm 三、鞏固練習(xí) 教材P14 練習(xí)2、3 四、應(yīng)用拓展例3觀察下列各式,通過(guò)分母有理數(shù),把不是最簡(jiǎn)二次根式的化成最簡(jiǎn)二次根式:=-1,=-, 同理可得:=-, 從計(jì)算結(jié)果中找出規(guī)律,并利用這一規(guī)律計(jì)算 (+)(+1)的值 分析:由題意可知,本題所給的是一組分母有理化的式子,因此,分母有理化后就可以達(dá)到化簡(jiǎn)的目的 解:原式=(-1+-+-+-)×(+1) =(-1)(+1) =2002-1=2001 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:最簡(jiǎn)二次根式的概念及其

18、運(yùn)用 六、布置作業(yè) 1教材P15 習(xí)題212 3、7、1016.3 二次根式的加減第一課時(shí) 教學(xué)內(nèi)容 二次根式的加減 教學(xué)目標(biāo) 理解和掌握二次根式加減的方法 先提出問(wèn)題,分析問(wèn)題,在分析問(wèn)題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解再總結(jié)經(jīng)驗(yàn),用它來(lái)指導(dǎo)根式的計(jì)算和化簡(jiǎn) 重難點(diǎn)關(guān)鍵 1重點(diǎn):二次根式化簡(jiǎn)為最簡(jiǎn)根式 2難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡(jiǎn)二次根式 教學(xué)過(guò)程 一、復(fù)習(xí)引入 學(xué)生活動(dòng):計(jì)算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教師點(diǎn)評(píng):上面題目的結(jié)果,實(shí)際上是我們以前所學(xué)的同類項(xiàng)合并同類項(xiàng)合并就是字母不變,系數(shù)相加減 二、

19、探索新知 學(xué)生活動(dòng):計(jì)算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老師點(diǎn)評(píng): (1)如果我們把當(dāng)成x,不就轉(zhuǎn)化為上面的問(wèn)題嗎? 2+3=(2+3)=5 (2)把當(dāng)成y; 2-3+5=(2-3+5)=4=8 (3)把當(dāng)成z; +2+ =2+2+3=(1+2+3)=6 (4)看為x,看為y 3-2+ =(3-2)+ =+ 因此,二次根式的被開方數(shù)相同是可以合并的,如2與表面上看是不相同的,但它們可以合并嗎?可以的 (板書)3+=3+2=5 3+=3+3=6 所以,二次根式加減時(shí),可以先將二次根式化成最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并 例1計(jì)算 (1)+

20、(2)+ 分析:第一步,將不是最簡(jiǎn)二次根式的項(xiàng)化為最簡(jiǎn)二次根式;第二步,將相同的最簡(jiǎn)二次根式進(jìn)行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2計(jì)算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+ 三、鞏固練習(xí) 教材P19 練習(xí)1、2 四、應(yīng)用拓展 例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值 分析:本題首先將已知等式進(jìn)行變形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3其次,根據(jù)二次根式的加減運(yùn)算,

21、先把各項(xiàng)化成最簡(jiǎn)二次根式,再合并同類二次根式,最后代入求值 解:4x2+y2-4x-6y+10=0 4x2-4x+1+y2-6y+9=0 (2x-1)2+(y-3)2=0 x=,y=3 原式=+y2-x2+5x =2x+-x+5 =x+6 當(dāng)x=,y=3時(shí), 原式=×+6=+3 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:(1)不是最簡(jiǎn)二次根式的,應(yīng)化成最簡(jiǎn)二次根式;(2)相同的最簡(jiǎn)二次根式進(jìn)行合并 六、布置作業(yè) 1教材P21 習(xí)題213 1、2、3、516.3 二次根式的加減第二課時(shí) 教學(xué)內(nèi)容 利用二次根式化簡(jiǎn)的數(shù)學(xué)思想解應(yīng)用題 教學(xué)目標(biāo) 運(yùn)用二次根式、化簡(jiǎn)解應(yīng)用題 通過(guò)復(fù)習(xí),將二次根式化成被開方

22、數(shù)相同的最簡(jiǎn)二次根式,進(jìn)行合并后解應(yīng)用題 重難點(diǎn)關(guān)鍵 講清如何解答應(yīng)用題既是本節(jié)課的重點(diǎn),又是本節(jié)課的難點(diǎn)、關(guān)鍵點(diǎn) 教學(xué)過(guò)程 一、復(fù)習(xí)引入 上節(jié)課,我們已經(jīng)講了二次根式如何加減的問(wèn)題,我們把它歸為兩個(gè)步驟:第一步,先將二次根式化成最簡(jiǎn)二次根式;第二步,再將被開方數(shù)相同的二次根式進(jìn)行合并,下面我們講三道例題以做鞏固二、探索新知例1如圖所示的RtABC中,B=90°,點(diǎn)P從點(diǎn)B開始沿BA邊以1厘米/秒的速度向點(diǎn)A移動(dòng);同時(shí),點(diǎn)Q也從點(diǎn)B開始沿BC邊以2厘米/秒的速度向點(diǎn)C移動(dòng)問(wèn):幾秒后PBQ的面積為35平方厘米?PQ的距離是多少厘米?(結(jié)果用最簡(jiǎn)二次根式表示) 分析:設(shè)x秒后PBQ的面積

23、為35平方厘米,那么PB=x,BQ=2x,根據(jù)三角形面積公式就可以求出x的值 解:設(shè)x 后PBQ的面積為35平方厘米 則有PB=x,BQ=2x 依題意,得:x·2x=35 x2=35 x= 所以秒后PBQ的面積為35平方厘米 PQ=5 答:秒后PBQ的面積為35平方厘米,PQ的距離為5厘米 例2要焊接如圖所示的鋼架,大約需要多少米鋼材(精確到0.1m)?分析:此框架是由AB、BC、BD、AC組成,所以要求鋼架的鋼材,只需知道這四段的長(zhǎng)度 解:由勾股定理,得 AB=2 BC= 所需鋼材長(zhǎng)度為 AB+BC+AC+BD =2+5+2 =3+7 3×2.24+713.7(m) 答:

24、要焊接一個(gè)如圖所示的鋼架,大約需要13.7m的鋼材 三、鞏固練習(xí) 教材P19 練習(xí)3 四、應(yīng)用拓展 例3若最簡(jiǎn)根式與根式是同類二次根式,求a、b的值(同類二次根式就是被開方數(shù)相同的最簡(jiǎn)二次根式) 分析:同類二次根式是指幾個(gè)二次根式化成最簡(jiǎn)二次根式后,被開方數(shù)相同;事實(shí)上,根式不是最簡(jiǎn)二次根式,因此把化簡(jiǎn)成|b|·,才由同類二次根式的定義得3a-b=2,2a-b+6=4a+3b 解:首先把根式化為最簡(jiǎn)二次根式: =|b|· 由題意得 a=1,b=1 五、歸納小結(jié) 本節(jié)課應(yīng)掌握運(yùn)用最簡(jiǎn)二次根式的合并原理解決實(shí)際問(wèn)題 六、布置作業(yè)1教材P21 習(xí)題213 7第十七章 勾股定理17

25、1 勾股定理第一課時(shí)一、教學(xué)目標(biāo)1了解勾股定理的發(fā)現(xiàn)過(guò)程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理。2培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問(wèn)題總結(jié)規(guī)律的意識(shí)和能力。3介紹我國(guó)古代在勾股定理研究方面所取得的成就,激發(fā)學(xué)生的愛國(guó)熱情,促其勤奮學(xué)習(xí)。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的內(nèi)容及證明。2難點(diǎn):勾股定理的證明。三、例題的意圖分析例1(補(bǔ)充)通過(guò)對(duì)定理的證明,讓學(xué)生確信定理的正確性;通過(guò)拼圖,發(fā)散學(xué)生的思維,鍛煉學(xué)生的動(dòng)手實(shí)踐能力;這個(gè)古老的精彩的證法,出自我國(guó)古代無(wú)名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國(guó)情懷。例2使學(xué)生明確,圖形經(jīng)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變。進(jìn)一步讓學(xué)生確信勾股定

26、理的正確性。四、課堂引入目前世界上許多科學(xué)家正在試圖尋找其他星球的“人”,為此向宇宙發(fā)出了許多信號(hào),如地球上人類的語(yǔ)言、音樂(lè)、各種圖形等。我國(guó)數(shù)學(xué)家華羅庚曾建議,發(fā)射一種反映勾股定理的圖形,如果宇宙人是“文明人”,那么他們一定會(huì)識(shí)別這種語(yǔ)言的。這個(gè)事實(shí)可以說(shuō)明勾股定理的重大意義。尤其是在兩千年前,是非常了不起的成就。讓學(xué)生畫一個(gè)直角邊為3cm和4cm的直角ABC,用刻度尺量出AB的長(zhǎng)。以上這個(gè)事實(shí)是我國(guó)古代3000多年前有一個(gè)叫商高的人發(fā)現(xiàn)的,他說(shuō):“把一根直尺折成直角,兩段連結(jié)得一直角三角形,勾廣三,股修四,弦隅五。”這句話意思是說(shuō)一個(gè)直角三角形較短直角邊(勾)的長(zhǎng)是3,長(zhǎng)的直角邊(股)的長(zhǎng)

27、是4,那么斜邊(弦)的長(zhǎng)是5。再畫一個(gè)兩直角邊為5和12的直角ABC,用刻度尺量AB的長(zhǎng)。你是否發(fā)現(xiàn)32+42與52的關(guān)系,52+122和132的關(guān)系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。對(duì)于任意的直角三角形也有這個(gè)性質(zhì)嗎?五、例習(xí)題分析例1(補(bǔ)充)已知:在ABC中,C=90°,A、B、C的對(duì)邊為a、b、c。求證:a2b2=c2。分析:讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。拼成如圖所示,其等量關(guān)系為:4S+S小正=S大正 4×ab(ba)2=c2,化簡(jiǎn)可證。發(fā)揮學(xué)生的想象能力拼出不同的圖形

28、,進(jìn)行證明。 勾股定理的證明方法,達(dá)300余種。這個(gè)古老的精彩的證法,出自我國(guó)古代無(wú)名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國(guó)情懷。例2已知:在ABC中,C=90°,A、B、C的對(duì)邊為a、b、c。求證:a2b2=c2。分析:左右兩邊的正方形邊長(zhǎng)相等,則兩個(gè)正方形的面積相等。左邊S=4×abc2右邊S=(a+b)2左邊和右邊面積相等,即4×abc2=(a+b)2化簡(jiǎn)可證。六、課堂練習(xí)1勾股定理的具體內(nèi)容是: 。2如圖,直角ABC的主要性質(zhì)是:C=90°,(用幾何語(yǔ)言表示)兩銳角之間的關(guān)系: ;若D為斜邊中點(diǎn),則斜邊中線 ;若B=30°,則B的對(duì)邊

29、和斜邊: ;三邊之間的關(guān)系: 。3ABC的三邊a、b、c,若滿足b2= a2c2,則 =90°; 若滿足b2c2a2,則B是 角; 若滿足b2c2a2,則B是 角。課后反思:171 勾股定理第二課時(shí)一、教學(xué)目標(biāo)1會(huì)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算。2樹立數(shù)形結(jié)合的思想、分類討論思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的簡(jiǎn)單計(jì)算。2難點(diǎn):勾股定理的靈活運(yùn)用。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生熟悉定理的使用,剛開始使用定理,讓學(xué)生畫好圖形,并標(biāo)好圖形,理清邊之間的關(guān)系。讓學(xué)生明確在直角三角形中,已知任意兩邊都可以求出第三邊。并學(xué)會(huì)利用不同的條件轉(zhuǎn)化為已知兩邊求第三邊。例2(補(bǔ)充)讓學(xué)生注意所給條件

30、的不確定性,知道考慮問(wèn)題要全面,體會(huì)分類討論思想。例3(補(bǔ)充)勾股定理的使用范圍是在直角三角形中,因此注意要?jiǎng)?chuàng)造直角三角形,作高是常用的創(chuàng)造直角三角形的輔助線做法。讓學(xué)生把前面學(xué)過(guò)的知識(shí)和新知識(shí)綜合運(yùn)用,提高綜合能力。四、課堂引入復(fù)習(xí)勾股定理的文字?jǐn)⑹?;勾股定理的符?hào)語(yǔ)言及變形。學(xué)習(xí)勾股定理重在應(yīng)用。五、例習(xí)題分析例1(補(bǔ)充)在RtABC,C=90°已知a=b=5,求c。已知a=1,c=2, 求b。已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。已知b=15,A=30°,求a,c。分析:剛開始使用定理,讓學(xué)生畫好圖形,并標(biāo)好圖形,理清邊之間的關(guān)系。已知兩直

31、角邊,求斜邊直接用勾股定理。已知斜邊和一直角邊,求另一直角邊,用勾股定理的便形式。已知一邊和兩邊比,求未知邊。通過(guò)前三題讓學(xué)生明確在直角三角形中,已知任意兩邊都可以求出第三邊。后兩題讓學(xué)生明確已知一邊和兩邊關(guān)系,也可以求出未知邊,學(xué)會(huì)見比設(shè)參的數(shù)學(xué)方法,體會(huì)由角轉(zhuǎn)化為邊的關(guān)系的轉(zhuǎn)化思想。例2(補(bǔ)充)已知直角三角形的兩邊長(zhǎng)分別為5和12,求第三邊。分析:已知兩邊中較大邊12可能是直角邊,也可能是斜邊,因此應(yīng)分兩種情況分別進(jìn)形計(jì)算。讓學(xué)生知道考慮問(wèn)題要全面,體會(huì)分類討論思想。例3(補(bǔ)充)已知:如圖,等邊ABC的邊長(zhǎng)是6cm。求等邊ABC的高。 求SABC。分析:勾股定理的使用范圍是在直角三角形中,

32、因此注意要?jiǎng)?chuàng)造直角三角形,作高是常用的創(chuàng)造直角三角形的輔助線做法。欲求高CD,可將其置身于RtADC或RtBDC中,但只有一邊已知,根據(jù)等腰三角形三線合一性質(zhì),可求AD=CD=AB=3cm,則此題可解。六、課堂練習(xí)1填空題在RtABC,C=90°,a=8,b=15,則c= 。在RtABC,B=90°,a=3,b=4,則c= 。在RtABC,C=90°,c=10,a:b=3:4,則a= ,b= 。一個(gè)直角三角形的三邊為三個(gè)連續(xù)偶數(shù),則它的三邊長(zhǎng)分別為 。已知直角三角形的兩邊長(zhǎng)分別為3cm和5cm,則第三邊長(zhǎng)為 。已知等邊三角形的邊長(zhǎng)為2cm,則它的高為 ,面積為 。

33、2已知:如圖,在ABC中,C=60°,AB=,AC=4,AD是BC邊上的高,求BC的長(zhǎng)。 3已知等腰三角形腰長(zhǎng)是10,底邊長(zhǎng)是16,求這個(gè)等腰三角形的面積。課后反思:171 勾股定理第三課時(shí)一、教學(xué)目標(biāo)1會(huì)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題。2樹立數(shù)形結(jié)合的思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的應(yīng)用。2難點(diǎn):實(shí)際問(wèn)題向數(shù)學(xué)問(wèn)題的轉(zhuǎn)化。三、例題的意圖分析例1(教材P74頁(yè)探究1)明確如何將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,注意條件的轉(zhuǎn)化;學(xué)會(huì)如何利用數(shù)學(xué)知識(shí)、思想、方法解決實(shí)際問(wèn)題。例2(教材P75頁(yè)探究2)使學(xué)生進(jìn)一步熟練使用勾股定理,探究直角三角形三邊的關(guān)系:保證一邊不變,其它兩邊的變化。四、課堂

34、引入勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。五、例習(xí)題分析例1(教材P74頁(yè)探究1)分析:在實(shí)際問(wèn)題向數(shù)學(xué)問(wèn)題的轉(zhuǎn)化過(guò)程中,注意勾股定理的使用條件,即門框?yàn)殚L(zhǎng)方形,四個(gè)角都是直角。讓學(xué)生深入探討圖中有幾個(gè)直角三角形?圖中標(biāo)字母的線段哪條最長(zhǎng)?指出薄木板在數(shù)學(xué)問(wèn)題中忽略厚度,只記長(zhǎng)度,探討以何種方式通過(guò)?轉(zhuǎn)化為勾股定理的計(jì)算,采用多種方法。注意給學(xué)生小結(jié)深化數(shù)學(xué)建模思想,激發(fā)數(shù)學(xué)興趣。例2(教材P75頁(yè)探究2)分析:在AOB中,已知AB=3,AO=2.5,利用勾股定理計(jì)算OB。 在COD中,已

35、知CD=3,CO=2,利用勾股定理計(jì)算OD。則BD=ODOB,通過(guò)計(jì)算可知BDAC。進(jìn)一步讓學(xué)生探究AC和BD的關(guān)系,給AC不同的值,計(jì)算BD。六、課堂練習(xí)1小明和爸爸媽媽十一登香山,他們沿著45度的坡路走了500米,看到了一棵紅葉樹,這棵紅葉樹的離地面的高度是 米。2如圖,山坡上兩株樹木之間的坡面距離是4米,則這兩株樹之間的垂直距離是 米,水平距離是 米。2題圖 3題圖 4題圖3如圖,一根12米高的電線桿兩側(cè)各用15米的鐵絲固定,兩個(gè)固定點(diǎn)之間的距離是 。4如圖,原計(jì)劃從A地經(jīng)C地到B地修建一條高速公路,后因技術(shù)攻關(guān),可以打隧道由A地到B地直接修建,已知高速公路一公里造價(jià)為300萬(wàn)元,隧道總

36、長(zhǎng)為2公里,隧道造價(jià)為500萬(wàn)元,AC=80公里,BC=60公里,則改建后可省工程費(fèi)用是多少?課后反思:172 勾股定理的逆定理第一課時(shí)一、教學(xué)目標(biāo)1體會(huì)勾股定理的逆定理得出過(guò)程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的證明方法。3理解原命題、逆命題、逆定理的概念及關(guān)系。二、重點(diǎn)、難點(diǎn)1重點(diǎn):掌握勾股定理的逆定理及證明。2難點(diǎn):勾股定理的逆定理的證明。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生了解命題,逆命題,逆定理的概念,及它們之間的關(guān)系。例2(P82探究)通過(guò)讓學(xué)生動(dòng)手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,鍛煉學(xué)生的動(dòng)手操作能力,再通過(guò)探究理論證明方法,使實(shí)踐上

37、升到理論,提高學(xué)生的理性思維。例3(補(bǔ)充)使學(xué)生明確運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:先判斷那條邊最大。分別用代數(shù)方法計(jì)算出a2+b2和c2的值。判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形。四、課堂引入創(chuàng)設(shè)情境:怎樣判定一個(gè)三角形是等腰三角形?怎樣判定一個(gè)三角形是直角三角形?和等腰三角形的判定進(jìn)行對(duì)比,從勾股定理的逆命題進(jìn)行猜想。五、例習(xí)題分析例1(補(bǔ)充)說(shuō)出下列命題的逆命題,這些命題的逆命題成立嗎?同旁內(nèi)角互補(bǔ),兩條直線平行。如果兩個(gè)實(shí)數(shù)的平方相等,那么兩個(gè)實(shí)數(shù)平方相等。線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等。直角三角形中

38、30°角所對(duì)的直角邊等于斜邊的一半。分析:每個(gè)命題都有逆命題,說(shuō)逆命題時(shí)注意將題設(shè)和結(jié)論調(diào)換即可,但要分清題設(shè)和結(jié)論,并注意語(yǔ)言的運(yùn)用。理順?biāo)麄冎g的關(guān)系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假。解略。例2(P82探究)證明:如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形。分析:注意命題證明的格式,首先要根據(jù)題意畫出圖形,然后寫已知求證。如何判斷一個(gè)三角形是直角三角形,現(xiàn)在只知道若有一個(gè)角是直角的三角形是直角三角形,從而將問(wèn)題轉(zhuǎn)化為如何判斷一個(gè)角是直角。利用已知條件作一個(gè)直角三角形,再證明和原三角形全等,使問(wèn)題得以解決。先

39、做直角,再截取兩直角邊相等,利用勾股定理計(jì)算斜邊A1B1=c,則通過(guò)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等可證。先讓學(xué)生動(dòng)手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法。充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受。證明略。例3(補(bǔ)充)已知:在ABC中,A、B、C的對(duì)邊分別是a、b、c,a=n21,b=2n,c=n21(n1)求證:C=90°。分析:運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:先判斷那條邊最大。分別用代數(shù)方法計(jì)算出a2+b2和c2的值。判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則

40、不是直角三角形。要證C=90°,只要證ABC是直角三角形,并且c邊最大。根據(jù)勾股定理的逆定理只要證明a2+b2=c2即可。由于a2+b2= (n21)2(2n)2=n42n21,c2=(n21)2= n42n21,從而a2+b2=c2,故命題獲證。六、課堂練習(xí)1判斷題。在一個(gè)三角形中,如果一邊上的中線等于這條邊的一半,那么這條邊所對(duì)的角是直角。命題:“在一個(gè)三角形中,有一個(gè)角是30°,那么它所對(duì)的邊是另一邊的一半。”的逆命題是真命題。勾股定理的逆定理是:如果兩條直角邊的平方和等于斜邊的平方,那么這個(gè)三角形是直角三角形。ABC的三邊之比是1:1:,則ABC是直角三角形。2AB

41、C中A、B、C的對(duì)邊分別是a、b、c,下列命題中的假命題是( )A如果CB=A,則ABC是直角三角形。B如果c2= b2a2,則ABC是直角三角形,且C=90°。C如果(ca)(ca)=b2,則ABC是直角三角形。D如果A:B:C=5:2:3,則ABC是直角三角形。3下列四條線段不能組成直角三角形的是( )Aa=8,b=15,c=17Ba=9,b=12,c=15Ca=,b=,c=Da:b:c=2:3:44已知:在ABC中,A、B、C的對(duì)邊分別是a、b、c,分別為下列長(zhǎng)度,判斷該三角形是否是直角三角形?并指出那一個(gè)角是直角? a=,b=,c=; a=5,b=7,c=9;a=2,b=,c

42、=; a=5,b=,c=1。課后反思:172 勾股定理的逆定理第二課時(shí)一、教學(xué)目標(biāo)1靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。2進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)。二、重點(diǎn)、難點(diǎn)1重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。2難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。三、例題的意圖分析例1(P83例2)讓學(xué)生養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí)。例2(補(bǔ)充)培養(yǎng)學(xué)生利用方程思想解決問(wèn)題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí)。四、課堂引入創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法。五、例習(xí)題分析例1(P83例2)分析:了解方位角,及方位名

43、詞;依題意畫出圖形;依題意可得PR=12×1.5=18,PQ=16×1.5=24, QR=30;因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理 的逆定理,知QPR=90°;PRS=QPR-QPS=45°。小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí)。例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀。分析:若判斷三角形的形狀,先求三角形的三邊長(zhǎng);設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;根據(jù)勾股定理的逆定理,由52+122=132,知

44、三角形為直角三角形。解略。六、課堂練習(xí)1小強(qiáng)在操場(chǎng)上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場(chǎng)上向東走了80m后,又走60m的方向是 。2如圖,在操場(chǎng)上豎直立著一根長(zhǎng)為2米的測(cè)影竿,早晨測(cè)得它的影長(zhǎng)為4米,中午測(cè)得它的影長(zhǎng)為1米,則A、B、C三點(diǎn)能否構(gòu)成直角三角形?為什么?3如圖,在我國(guó)沿海有一艘不明國(guó)籍的輪船進(jìn)入我國(guó)海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個(gè)基地前去攔截,六分鐘后同時(shí)到達(dá)C地將其攔截。已知甲巡邏艇每小時(shí)航行120海里,乙巡邏艇每小時(shí)航行50海里,航向?yàn)楸逼?0°,問(wèn):甲巡邏艇的航向?課后反思:172 勾股定理的逆定理第三課時(shí)一、

45、教學(xué)目標(biāo)1應(yīng)用勾股定理的逆定理判斷一個(gè)三角形是否是直角三角形。 2靈活應(yīng)用勾股定理及逆定理解綜合題。3進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)。二、重點(diǎn)、難點(diǎn)1重點(diǎn):利用勾股定理及逆定理解綜合題。2難點(diǎn):利用勾股定理及逆定理解綜合題。三、例題的意圖分析例1(補(bǔ)充)利用因式分解和勾股定理的逆定理判斷三角形的形狀。例2(補(bǔ)充)使學(xué)生掌握研究四邊形的問(wèn)題,通常添置輔助線把它轉(zhuǎn)化為研究三角形的問(wèn)題。本題輔助線作平行線間距離無(wú)法求解。創(chuàng)造3、4、5勾股數(shù),利用勾股定理的逆定理證明DE就是平行線間距離。例3(補(bǔ)充)勾股定理及逆定理的綜合應(yīng)用,注意條件的轉(zhuǎn)化及變形。四、課堂引入勾股定理和它的逆定理是黃金搭

46、檔,經(jīng)常綜合應(yīng)用來(lái)解決一些難度較大的題目。五、例習(xí)題分析例1(補(bǔ)充)已知:在ABC中,A、B、C的對(duì)邊分別是a、b、c,滿足a2+b2+c2+338=10a+24b+26c。試判斷ABC的形狀。分析:移項(xiàng),配成三個(gè)完全平方;三個(gè)非負(fù)數(shù)的和為0,則都為0;已知a、b、c,利用勾股定理的逆定理判斷三角形的形狀為直角三角形。例2(補(bǔ)充)已知:如圖,四邊形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四邊形ABCD的面積。分析:作DEAB,連結(jié)BD,則可以證明ABDEDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在DEC中,3、4、5勾股數(shù),DEC為直角三角形,DE

47、BC;利用梯形面積公式可解,或利用三角形的面積。例3(補(bǔ)充)已知:如圖,在ABC中,CD是AB邊上的高,且CD2=AD·BD。求證:ABC是直角三角形。 分析:AC2=AD2+CD2,BC2=CD2+BD2AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2六、課堂練習(xí)1若ABC的三邊a、b、c,滿足(ab)(a2b2c2)=0,則ABC是( )A等腰三角形;B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。2若ABC的三邊a、b、c,滿足a:b:c=1:1:,試判斷ABC的形狀。3已知:如圖,四邊形ABCD,AB=1,B

48、C=,CD=,AD=3,且ABBC。求:四邊形ABCD的面積。課后反思:第十八章 平行四邊形18.1 平行四邊形18.1.1 平行四邊形的性質(zhì)第一課時(shí)一、教學(xué)目標(biāo):1 理解并掌握平行四邊形的概念和平行四邊形對(duì)邊、對(duì)角相等的性質(zhì)2 會(huì)用平行四邊形的性質(zhì)解決簡(jiǎn)單的平行四邊形的計(jì)算問(wèn)題,并會(huì)進(jìn)行有關(guān)的論證3 培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力及邏輯推理能力二、重點(diǎn)、難點(diǎn)4 重點(diǎn):平行四邊形的定義,平行四邊形對(duì)角、對(duì)邊相等的性質(zhì),以及性質(zhì)的應(yīng)用5 難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算三、例題的意圖分析 例1是教材P93的例1,它是平行四邊形性質(zhì)的實(shí)際應(yīng)用,題目比較簡(jiǎn)單,其目的就是讓學(xué)生能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的計(jì)算,講課時(shí),可以讓學(xué)生來(lái)解答例2是補(bǔ)充的一道幾何證明題,即讓學(xué)生學(xué)會(huì)運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證,又讓學(xué)生從較簡(jiǎn)單的幾何論證開始,提高學(xué)生的推理論證能力和邏輯思維能力,學(xué)會(huì)演繹幾何論證的方法此題應(yīng)讓學(xué)生自己進(jìn)行推理論證四、課堂引入1我們一起來(lái)觀察下圖中的竹籬笆格子和汽車的防護(hù)鏈,想一想它們是什么幾何圖形的形

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論