2021-2022學(xué)年云南省昆明市云南民族大學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
2021-2022學(xué)年云南省昆明市云南民族大學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
2021-2022學(xué)年云南省昆明市云南民族大學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
2021-2022學(xué)年云南省昆明市云南民族大學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
2021-2022學(xué)年云南省昆明市云南民族大學(xué)高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若向量,則( )A30B31C32D332在等腰直角三角形中,為的中點,將它沿翻折,使點與點間的距離為,此時四面體

2、的外接球的表面積為( ).ABCD3趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為周髀算經(jīng)一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點,則此點取自小等邊三角形(陰影部分)的概率是( )ABCD4已知,且,則在方向上的投影為( )ABCD5已知復(fù)數(shù),則( )ABCD6已知不等式組表示的平面區(qū)域的面積為9,若點, 則的最大值為( )A3B6C9D127已

3、知函數(shù),且關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍( )ABCD8在關(guān)于的不等式中,“”是“恒成立”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件9復(fù)數(shù)(為虛數(shù)單位),則等于( )A3BC2D10已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為 ABCD11函數(shù)的圖象在點處的切線為,則在軸上的截距為( )ABCD12已知函數(shù)在上單調(diào)遞增,則的取值范圍( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的圖象在處的切線與直線互相垂直,則_14如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛

4、線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為_.15設(shè)常數(shù),如果的二項展開式中項的系數(shù)為-80,那么_.16將一顆質(zhì)地均勻的正方體骰子(每個面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是6的的概率是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于,兩點,與曲線交于,兩點,求取得

5、最大值時直線的直角坐標(biāo)方程.18(12分)已知為坐標(biāo)原點,單位圓與角終邊的交點為,過作平行于軸的直線,設(shè)與終邊所在直線的交點為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.19(12分)某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費(I)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;()為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超

6、過元的占,求,的值;()在滿足()的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學(xué)期望.20(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設(shè)為的中點,為上的動點(不與重合)求二面角的正切值的最小值21(12分)已知是遞增的等比數(shù)列,且、成等差數(shù)列.()求數(shù)列的通項公式;()設(shè),求數(shù)列的前項和.22(10分)已知的內(nèi)角、的對邊分別為、,滿足.有三個條件:;.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設(shè)為邊上

7、一點,且,求的面積.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標(biāo)運算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.2D【解析】如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知, 翻折后, ,設(shè)外接圓的半徑為, , ,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設(shè)幾何體外接球的半徑為,

8、 , 四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補(bǔ)形法,因正方體,長方體的外接球半徑 容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.3A【解析】根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可【詳解】在中,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題4C【解析】由向量垂直的向量表示求出,再由投影的定義計

9、算【詳解】由可得,因為,所以故在方向上的投影為故選:C【點睛】本題考查向量的數(shù)量積與投影掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵5B【解析】分析:利用的恒等式,將分子、分母同時乘以 ,化簡整理得 詳解: ,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負(fù)問題.6C【解析】分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,

10、解得,此時,由圖可得當(dāng)過點時,取得最大值9,故選C.點睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.7B【解析】根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結(jié)合即可【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,故選:B【點睛】本題主要考查函數(shù)圖象與方程零點

11、之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題8C【解析】討論當(dāng)時,是否恒成立;討論當(dāng)恒成立時,是否成立,即可選出正確答案.【詳解】解:當(dāng)時,由開口向上,則恒成立;當(dāng)恒成立時,若,則 不恒成立,不符合題意,若 時,要使得恒成立,則 ,即 .所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時,一般分成兩步,若,則推出 是 的充分條件;若,則推出 是 的必要條件.9D【解析】利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算

12、,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.10D【解析】由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可【詳解】解:如圖,點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小, 設(shè)正方體的棱長為,則,取,連接,則共面,在中,設(shè)到的距離為,設(shè)到平面的距離為,.故選D【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題11A【解析】求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線

13、的縱截距為.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.12B【解析】由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。131.【解析】求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進(jìn)行求解即可【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率 本題正確結(jié)果:【點睛】本題主

14、要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵141【解析】由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積【詳解】如圖,作,交于,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:故答案為:1【點睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量15【解析】利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.,解得.故答案為:-2.【點睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.16【解析】先求出基本事件總數(shù)663

15、6,再由列舉法求出“點數(shù)之和等于6”包含的基本事件的個數(shù),由此能求出“點數(shù)之和等于6”的概率【詳解】基本事件總數(shù)6636,點數(shù)之和是6包括共5種情況,則所求概率是故答案為【點睛】本題考查古典概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)曲線,曲線.(2).【解析】(1)用和消去參數(shù)即得的極坐標(biāo)方程;將兩邊同時乘以,然后由解得直角坐標(biāo)方程.(2)過極點的直線的參數(shù)方程為,代入到和:中,表示出即可求解.【詳解】解:由和,得,化簡得故:將兩邊同時乘以,得因為,所以得的直角坐標(biāo)方程.(2)設(shè)直線的極坐標(biāo)方程由,得,由

16、,得故當(dāng)時,取得最大值此時直線的極坐標(biāo)方程為:,其直角坐標(biāo)方程為:.【點睛】考查直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互相轉(zhuǎn)化以及應(yīng)用圓的極坐標(biāo)方程中的幾何意義求距離的的最大值方法;中檔題.18(1);(2).【解析】(1)根據(jù)題意,求得,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1) 因為 , , 所以,所以函數(shù)的最小正周期為. (2)因為,所以,所以,故函數(shù)在區(qū)間上的值域為.【點睛】本題考查正弦型函數(shù)的周期和值域,運用到向量的坐標(biāo)運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.19(1);(2

17、),;(3)見解析.【解析】試題分析: (1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關(guān)于的方程,即可得;(3)取每段中點值作為代表的用電量,分別算出對應(yīng)的費用值,對應(yīng)得出每組電費的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當(dāng)時,;當(dāng)當(dāng)時,;當(dāng)當(dāng)時,所以與之間的函數(shù)解析式為.(2)由(1)可知,當(dāng)時,則,結(jié)合頻率分布直方圖可知,(3)由題意可知可取50,150,250,350,450,550,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,故的概率分布列為25751402203104100.10.20.30.20.150.05所以

18、隨機(jī)變量的數(shù)學(xué)期望20(1)見解析(2)【解析】(1)推導(dǎo)出,從而平面,由面面垂直的判定定理即可得證(2)過作,以為坐標(biāo)原點,建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時,正切值求得最小值;【詳解】(1)因為,面,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標(biāo)原點,建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個法向量為設(shè)平面的一個法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時取得最大值,最大值為,則最小值為【點睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.21();().【解析】()設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項公式可得出數(shù)列的通項公式;()求得,然后利用裂項相消法可求得.【詳解】()設(shè)數(shù)列的公比為,由題意及,知.、成等差數(shù)列成等差數(shù)列,即,解得或(舍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論