福建省泉州市泉港2021-2022學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第1頁(yè)
福建省泉州市泉港2021-2022學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第2頁(yè)
福建省泉州市泉港2021-2022學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第3頁(yè)
福建省泉州市泉港2021-2022學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第4頁(yè)
福建省泉州市泉港2021-2022學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請(qǐng)按要求用筆。3請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知直線是曲線的切線,則( )A或1B或2C或D或12已知數(shù)列滿足,(),則數(shù)列的通項(xiàng)公式( )ABCD3過(guò)雙曲線

2、左焦點(diǎn)的直線交的左支于兩點(diǎn),直線(是坐標(biāo)原點(diǎn))交的右支于點(diǎn),若,且,則的離心率是( )ABCD4已知,則的大小關(guān)系為( )ABCD5函數(shù)的圖象大致是( )ABCD6如圖,在三棱錐中,平面,現(xiàn)從該三棱錐的個(gè)表面中任選個(gè),則選取的個(gè)表面互相垂直的概率為( )ABCD7給甲、乙、丙、丁四人安排泥工、木工、油漆三項(xiàng)工作,每項(xiàng)工作至少一人,每人做且僅做一項(xiàng)工作,甲不能安排木工工作,則不同的安排方法共有()A12種B18種C24種D64種8設(shè),分別為雙曲線(a0,b0)的左、右焦點(diǎn),過(guò)點(diǎn)作圓 的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為( )ABCD9已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為點(diǎn),延長(zhǎng)交

3、橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率ABCD10直線x-3y+3=0經(jīng)過(guò)橢圓x2a2+y2b2=1ab0的左焦點(diǎn)F,交橢圓于A,B兩點(diǎn),交y軸于C點(diǎn),若FC=2CA,則該橢圓的離心率是()A3-1B3-12C22-2D2-111是恒成立的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件12函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖梯形為直角梯形,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_14如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫出的是某幾何體的三視圖

4、,則該幾何體的體積為_(kāi).15在矩形中,為的中點(diǎn),將和分別沿,翻折,使點(diǎn)與重合于點(diǎn).若,則三棱錐的外接球的表面積為_(kāi).16已知,且,則的最小值為_(kāi)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù)()當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;()若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍18(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,求證:.19(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),(1)求,; (2)猜想的表達(dá)式,并證明你的結(jié)論20(12分)圖1是由矩形ADEB,RtABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,F(xiàn)BC=60,將其沿AB,BC折起使得B

5、E與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC平面BCGE;(2)求圖2中的二面角BCGA的大小.21(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.22(10分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個(gè)數(shù);(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說(shuō)明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點(diǎn)坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對(duì)于,令,解得,故

6、切點(diǎn)為,代入直線方程得,解得或1.故選:D【點(diǎn)睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.2A【解析】利用數(shù)列的遞推關(guān)系式,通過(guò)累加法求解即可【詳解】數(shù)列滿足:,可得以上各式相加可得:,故選:【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力3D【解析】如圖,設(shè)雙曲線的右焦點(diǎn)為,連接并延長(zhǎng)交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點(diǎn)為,連接,連接并延長(zhǎng)交右支于.因?yàn)椋仕倪呅螢槠叫兴倪呅?,?又雙曲線為中心對(duì)稱圖形,故.設(shè),則,故,故.因?yàn)闉橹苯侨切?,故,解?在中,有,所以.故選:D.【點(diǎn)睛】本題考

7、查雙曲線離心率,注意利用雙曲線的對(duì)稱性(中心對(duì)稱、軸對(duì)稱)以及雙曲線的定義來(lái)構(gòu)造關(guān)于的方程,本題屬于難題.4A【解析】根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因?yàn)椋?因?yàn)?,所以,因?yàn)?,為增函?shù),所以所以,故選:A.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.5B【解析】根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計(jì)算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對(duì)應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),則的定義域?yàn)?,當(dāng),單增,當(dāng),單減,則.則在上單增,上單減,.選B.【點(diǎn)睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡(jiǎn)化了運(yùn)算,同

8、學(xué)們還可以用特殊值法等方法進(jìn)行判斷.6A【解析】根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對(duì)數(shù),再求出四個(gè)面中任選2個(gè)的方法數(shù),從而可計(jì)算概率【詳解】由已知平面,可得,從該三棱錐的個(gè)面中任選個(gè)面共有種不同的選法,而選取的個(gè)表面互相垂直的有種情況,故所求事件的概率為故選:A【點(diǎn)睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個(gè)數(shù)7C【解析】根據(jù)題意,分2步進(jìn)行分析:,將4人分成3組,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項(xiàng)工作,由分步計(jì)數(shù)原理計(jì)算可得答案【詳解】解:根據(jù)題意,分2步進(jìn)行分析:,將4人分成3組,有種分法;,

9、甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項(xiàng)工作,有種情況,此時(shí)有種情況,則有種不同的安排方法;故選:C【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題8C【解析】設(shè)過(guò)點(diǎn)作圓 的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過(guò)點(diǎn)作圓 的切線的切點(diǎn)為,所以是中點(diǎn),.故選:C.【點(diǎn)睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.9B【解析】設(shè),則,因?yàn)?,所以若,則,所以,所以,不符合題意,所以,則,所以,所

10、以,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率故選B10A【解析】由直線x-3y+3=0過(guò)橢圓的左焦點(diǎn)F,得到左焦點(diǎn)為F(-3,0),且a2-b2=3,再由FC=2CA,求得A32,32,代入橢圓的方程,求得a2=33+62,進(jìn)而利用橢圓的離心率的計(jì)算公式,即可求解.【詳解】由題意,直線x-3y+3=0經(jīng)過(guò)橢圓的左焦點(diǎn)F,令y=0,解得x=3,所以c=3,即橢圓的左焦點(diǎn)為F(-3,0),且a2-b2=3 直線交y軸于C(0,1),所以,OF=3,OC=1,FC=2,因?yàn)镕C=2CA,所以FA=3,所以A32,32,又由點(diǎn)A在橢圓上,得3a2+9b2=4 由,可得4a2-24a

11、2+9=0,解得a2=33+62,所以e2=c2a2=633+6=4-23=3-12,所以橢圓的離心率為e=3-1.故選A.【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)離心率的求解,其中求橢圓的離心率(或范圍),常見(jiàn)有兩種方法:求出a,c ,代入公式e=ca;只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得e的值(范圍)11A【解析】設(shè) 成立;反之,滿足 ,但,故選A.12A【解析】求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以

12、及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】聯(lián)立直線與拋物線方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:聯(lián)立解得或,即,故答案為:【點(diǎn)睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.14【解析】根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.【點(diǎn)睛】

13、本題考查了根據(jù)三視圖求簡(jiǎn)單組合體的體積應(yīng)用問(wèn)題,是基礎(chǔ)題15.【解析】計(jì)算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過(guò)外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,設(shè)三棱錐外接球的半徑,因?yàn)橥饨忧虻那蛐臑檫^(guò)底面圓心垂直于底面的直線與中截面的交點(diǎn),則,所以外接球的表面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.16【解析】由,先將變形為,運(yùn)用基本不等式可得最小值,再求的最小值,運(yùn)用函數(shù)單調(diào)性即可得到所求值.【詳解】解:因?yàn)椋?,所?因?yàn)椋?,當(dāng)且僅當(dāng)時(shí),取等號(hào),所以 令,則,令,則,所

14、以函數(shù)在上單調(diào)遞增,所以所以則所求最小值為故答案為: 【點(diǎn)睛】此題考查基本不等式的運(yùn)用:求最值,注意變形和滿足的條件:一正二定三相等,考查利用單調(diào)性求最值,考查化簡(jiǎn)和運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17 ()見(jiàn)解析()【解析】()首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可; ()將原問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化為,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)的取值范圍即可【詳解】解:()當(dāng)時(shí),當(dāng)時(shí),在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),由得:;由得:當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,無(wú)單調(diào)遞增區(qū)間:當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增

15、區(qū)間是()對(duì)任意的和,恒成立等價(jià)于:,恒成立即,恒成立令:,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當(dāng)時(shí),即又,實(shí)數(shù)的取值范圍是:【點(diǎn)睛】本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問(wèn)題,考查分類討論的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),屬于中等題18(1)(2)證明見(jiàn)解析【解析】(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無(wú)解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅當(dāng),時(shí)取等號(hào)).所以成立,故成立.【點(diǎn)睛】本題考查分類討論法解絕對(duì)

16、值不等式,基本不等式的應(yīng)用,屬于中檔題.19,;,證明見(jiàn)解析【解析】對(duì)函數(shù)進(jìn)行求導(dǎo),并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式,對(duì)函數(shù)再進(jìn)行求導(dǎo)并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式;根據(jù)中,的表達(dá)式進(jìn)行歸納猜想,再利用數(shù)學(xué)歸納法證明即可.【詳解】(1),其中, ,其中, (2)猜想, 下面用數(shù)學(xué)歸納法證明:當(dāng)時(shí),成立, 假設(shè)時(shí),猜想成立即 當(dāng)時(shí),當(dāng)時(shí),猜想成立由對(duì)成立【點(diǎn)睛】本題考查導(dǎo)數(shù)及其應(yīng)用、三角恒等變換、歸納與猜想和數(shù)學(xué)歸納法;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;熟練掌握用數(shù)學(xué)歸納法進(jìn)行證明的步驟是求解本題的關(guān)鍵;屬于中檔題.20 (1)見(jiàn)詳解;(2) .【解析】(1)因?yàn)檎奂埡驼澈喜桓?/p>

17、變矩形,和菱形內(nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因?yàn)槭瞧矫娲咕€,所以易證.(2)在圖中找到對(duì)應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,又因?yàn)楹驼吃谝黄?,A,C,G,D四點(diǎn)共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過(guò)B作延長(zhǎng)線于H,連結(jié)AH,因?yàn)锳B平面BCGE,所以而又,故平面,所以.又因?yàn)樗允嵌娼堑钠矫娼牵谥?,又因?yàn)楣?,所?而在中,,即二面角的度數(shù)為.【點(diǎn)睛】很新穎的立體幾何考題首先是多面體粘合問(wèn)題,考查考生在粘合過(guò)程中哪些量是不變的再者粘合后的多面體不是直棱

18、柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法最后將求二面角轉(zhuǎn)化為求二面角的平面角問(wèn)題考查考生的空間想象能力21(1)見(jiàn)解析;(2)見(jiàn)解析【解析】(1)求導(dǎo)得,分類討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,此時(shí)在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,即,則在單調(diào)遞減,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構(gòu)造新函數(shù),通過(guò)導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.22(1)個(gè);(1)存在,.【解析】試題分析:(1)設(shè),對(duì)其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對(duì)和兩種情況進(jìn)行討論,得到的解析式,進(jìn)一步構(gòu)造,通過(guò)求導(dǎo)得到最值,得到滿足條件的的范圍試題解析:(1)設(shè),1分令,得遞增;令,得遞減,1分,即,3分設(shè),結(jié)合與在上圖象可知,這兩個(gè)函數(shù)的圖象在上有兩個(gè)交點(diǎn),即在上零點(diǎn)的個(gè)數(shù)為15分(或由方程在上有兩根可得)(1)假設(shè)存在實(shí)數(shù),使得對(duì)恒成立,則,對(duì)恒成立,即,對(duì)恒成立 ,6分設(shè),令,得遞增;令,得遞減,當(dāng)即時(shí),4故當(dāng)時(shí),對(duì)恒成立,8分當(dāng)即時(shí),在上

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論