下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、傅里葉級(jí)數(shù)的幾何意義 巧妙記憶公式的方法最近我在重新學(xué)習(xí)偏微分方程的時(shí)候又遇到“傅里葉級(jí)數(shù)”了,我曾經(jīng)覺得這個(gè)公式非常繁瑣,用到的時(shí)候就去翻書查看,沒法自己信心滿滿的寫出來?,F(xiàn)在我找到訣竅了,可以不需要任何參考書,給我一個(gè)周期函數(shù),我可以馬上寫出它的傅里葉級(jí)數(shù)。訣竅就在于從“幾何”的角度來看待傅里葉級(jí)數(shù)。當(dāng)我們把一個(gè)周期函數(shù)表達(dá)成傅里葉級(jí)數(shù)時(shí),其實(shí)我們只是在做一個(gè)動(dòng)作,那就是把函數(shù)“投影”到一系列由三角函數(shù)構(gòu)成的“坐標(biāo)軸”上。1.什么是投影 我們先來復(fù)習(xí)什么是投影吧。考慮一個(gè)簡(jiǎn)單的二維平面的例子。如下圖所示,給定兩個(gè)向量 u 和 v ,我們從 u 的末端出發(fā)作到 v 所在直線的垂線,得到一個(gè)跟
2、 v 同向的新向量 p 。這個(gè)過程就稱作 u 到 v 所在直線的投影,得到的新向量 p 就是 u 沿 v 方向的分量。圖中的系數(shù) c 是 p 跟 v 的比例,也就是 u 在 v 軸上的“坐標(biāo)”。我們可以用尺規(guī)作圖來完成投影這個(gè)動(dòng)作,問題是:如果給定的向量 u 和 v 都是代數(shù)形式的,我們?cè)趺从么鷶?shù)的方法求 c ? 我相信只要有基本線性代數(shù)知識(shí)的同學(xué)都可以輕松解決這個(gè)問題。我們知道 u-cv這個(gè)向量是“正交”于 v 的,用數(shù)學(xué)語言表達(dá)就是(u-cv)Tv=0。我們馬上就可以得到 c 的表達(dá)式如下。 (1)2.向量在一組正交基上的展開 在講傅里葉級(jí)數(shù)之前,我們還需引進(jìn)線性代數(shù)中“正交基”的概念。如
3、果這個(gè)概念你覺得陌生,就把它想成是互相垂直的“坐標(biāo)軸”?;氐絼偛胚@個(gè)例子,如下圖所示,現(xiàn)在我們引進(jìn)一組正交基 v1,v2,那么 u 可以展開成以下形式 (2) 從圖上來看,(2)式其實(shí)說的是我們可以把 u“投影”到 v1 和 v2 這兩個(gè)坐標(biāo)軸上,c1 和 c2 就是 u 的新“坐標(biāo)”。問題是:我們?cè)趺辞?c1 和 c2 呢?你會(huì)說,我們可以(2)式兩邊同時(shí)乘以 v1 或 v2,然后利用它們正交的性質(zhì)來求 c1,c2。沒錯(cuò),數(shù)學(xué)上是這么做的。但是利用之前關(guān)于投影的討論,我們可以直接得出答案,直接利用(1)式就可以得到如下的表達(dá)式: (3)3.傅里葉級(jí)數(shù)的幾何意義 現(xiàn)在我們已經(jīng)明白一件事情了:如
4、果想把一個(gè)向量在一組正交基上展開,也就是找到這個(gè)向量沿每條新“坐標(biāo)軸”的“坐標(biāo)”,那么我們只要把它分別投影到每條坐標(biāo)軸上就好了,也就是把(1)式中的 v 換成新坐標(biāo)軸就好了。說了半天,這些東西跟傅里葉級(jí)數(shù)有什么關(guān)系?我們先回憶一下傅里葉級(jí)數(shù)的表達(dá)式。給定一個(gè)周期是 2l 的周期函數(shù) f(x),它的傅里葉級(jí)數(shù)為:(4)其中系數(shù)表達(dá)式如下: (5) 我不喜歡記憶這些公式,有辦法可以更好的理解他們來幫助記憶嗎?答案是有的,那就是從幾何的角度來看。傅里葉告訴我們,f(x)可以用下面這組由無限多個(gè)三角函數(shù)(包括常數(shù))組成的“正交基”來展開, (6) 這里我們需要在廣義上來理解“正交”。我們說兩個(gè)向量,或
5、兩個(gè)函數(shù)之間是正交的,意思是它們的“內(nèi)積”(innerproduct)為零?!皟?nèi)積”在有限維的“向量空間”中的形式為“點(diǎn)積”(dotproduct)。在無限維的“函數(shù)空間”中,對(duì)于定義在區(qū)間a,b上的兩個(gè)實(shí)函數(shù) u(x),v(x)來說,它們的內(nèi)積定義為 (7)正交基(6)中的每個(gè)函數(shù)都可以看做是一條獨(dú)立的坐標(biāo)軸,從幾何角度來看,傅里葉級(jí)數(shù)展開其實(shí)只是在做一個(gè)動(dòng)作,那就是把函數(shù)“投影”到一系列由三角函數(shù)構(gòu)成的“坐標(biāo)軸”上。上面(5)式中的系數(shù)則是函數(shù)在每條坐標(biāo)軸上的坐標(biāo)。 現(xiàn)在的問題是我們不能直接用(1)式來求這些坐標(biāo)了,因?yàn)樗贿m用于有限維的向量空間。在無限維的函數(shù)空間,我們需要把(1)式中分
6、子分母的點(diǎn)積分別替換成(7)式。那么(5)式中的所有系數(shù)馬上可以輕松的寫出: (8) 值得注意的是,(8)式中所有積分可以在任意一個(gè)長(zhǎng)度是2l的區(qū)間內(nèi)進(jìn)行。也就是說,不管是 -l,l還是0,2l,答案都是一樣的。 有同學(xué)會(huì)說,老師上課教的是對(duì)(4)式兩邊乘以1,cos(nx/l),或 sin(nx/l),然后積分,利用這些函數(shù)之間的正交性來得到(5)式。這些當(dāng)然是對(duì)的,而且我們應(yīng)該學(xué)會(huì)這種推導(dǎo)來加深對(duì)正交性的理解。但是在應(yīng)用上,我更喜歡用幾何的角度來看傅里葉級(jí)數(shù),把函數(shù)看成是無限維的向量,把傅里葉級(jí)數(shù)跟幾何中極其簡(jiǎn)單的“投影”的概念聯(lián)系起來,這樣學(xué)習(xí)新知識(shí)就變得簡(jiǎn)單了,而且可以毫無障礙的把公式
7、記住,甚至一輩子都難忘。 熟悉傅里葉級(jí)數(shù)的同學(xué)會(huì)問,那么對(duì)于復(fù)數(shù)形式的傅里葉級(jí)數(shù),我們是否也能用幾何投影的觀點(diǎn)來看,然后寫出級(jí)數(shù)中的所有系數(shù)呢?答案是肯定的。給定一個(gè)周期是 2l 的周期函數(shù) f(x),它的傅里葉級(jí)數(shù)的復(fù)數(shù)形式為: (9)其中系數(shù)表達(dá)式如下:(10)這意味著我們用了下面這組“正交基”來展開原函數(shù), (11) 我們之前提到了兩個(gè)函數(shù)正交,意思是它們的內(nèi)積為零。對(duì)于定義在區(qū)間a,b上的兩個(gè)復(fù)函數(shù) u(x),v(x)來說,它們的內(nèi)積定義為(12)其中v加上劃線意思是它的共軛。(10)中指數(shù)函數(shù)里的負(fù)號(hào)就是因?yàn)槿×斯曹椀年P(guān)系。 現(xiàn)在我們同樣可以把原函數(shù)分別投影到(11)中的每個(gè)函數(shù)所在
8、的“坐標(biāo)軸”來求出對(duì)應(yīng)的“坐標(biāo)”,也就是系數(shù)cn: (13) 這里我想強(qiáng)調(diào)一下這個(gè)“正交基”的重要性。在一個(gè)有限維的向量空間,給定任何向量都可以被一組基展開,它可以不必是正交的,這個(gè)時(shí)候展開項(xiàng)中的系數(shù)(也就是沿這組基中任一坐標(biāo)軸的坐標(biāo))需要求解一個(gè)線性方程組來得到。只有當(dāng)這組基是正交的時(shí)候,這些系數(shù)才能從給定向量往各坐標(biāo)軸上投影得出,也就是(1)式。同樣的,在無限維的函數(shù)空間,我們可以把一個(gè)函數(shù)在某個(gè)“基”中展開,但是只有在“正交基”中,展開項(xiàng)中的系數(shù)才能看成是函數(shù)投影的結(jié)果。最后做一個(gè)總結(jié),不管是向量 u 還是函數(shù) u,他們都可以被一組正交基vn:n=1,.,N(有限個(gè)向量)或vn:n=1,
9、.,(無限個(gè)函數(shù))展開如下: (14) 上式中的 cn 代表 u 在 vn 所在的坐標(biāo)軸上投影產(chǎn)生的坐標(biāo)。而(14)式中內(nèi)積的定義視情況而定,在有限維的向量空間(實(shí)數(shù)域),向量 u 和 v 的內(nèi)積是點(diǎn)積uTv;在無限維的函數(shù)空間,函數(shù)u(x)和v(x)的內(nèi)積的通用形式是(12),如果它們是實(shí)函數(shù),那么(12)就可以簡(jiǎn)化成(7)的形式。 我們可以看到,用幾何投影的觀點(diǎn)來看待傅里葉級(jí)數(shù),理解變得更加容易,因?yàn)槲蚁嘈潘腥硕寄芾斫馔队暗母拍?;同時(shí),傅里葉級(jí)數(shù)所有的公式都可以輕松的記住,想要遺忘都難了。我們?cè)趯W(xué)習(xí)不同學(xué)科的時(shí)候可以經(jīng)常的去做聯(lián)系,嘗試著用不同的角度去看待同一個(gè)問題,我相信這么做是很有好處的。后記(寫于2013年3月28號(hào)):這篇文章的核心思想其實(shí)是來自MIT的教授 Gilbert Strang 寫的 Introduction to Linear Algebra這本書(第三版)。我在好幾個(gè)月前重新學(xué)了一遍線性代數(shù),就是看 MIT的開放課程,授課老師是 Gilbert,他用的書就是上面提到這本。我從沒有如此享受過數(shù)學(xué)課。以前學(xué)的數(shù)學(xué)課似乎老師更注重?cái)?shù)學(xué)運(yùn)算和推導(dǎo),而不是討論數(shù)學(xué)背后的本質(zhì)。Gilbert 的講課方式講究原理,也就是 why”,而不是 how”,同時(shí)也有非常有趣的應(yīng)用。有興趣的同學(xué)可以去聽聽這門課
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南長(zhǎng)沙瀏陽市人民醫(yī)院公開招聘編外合同制人員8人備考筆試題庫(kù)及答案解析
- 深度解析(2026)《GBT 25987-2010裝甲防暴車》(2026年)深度解析
- 深度解析(2026)《GBT 25931-2010網(wǎng)絡(luò)測(cè)量和控制系統(tǒng)的精確時(shí)鐘同步協(xié)議》
- 福建漳州市2026屆國(guó)企類選優(yōu)生招聘(第四批)開考崗位參考考試題庫(kù)及答案解析
- 2025廣西百色市樂業(yè)縣專業(yè)森林消防救援隊(duì)伍招聘13人備考筆試試題及答案解析
- 2025重慶廣播新聞中心政務(wù)服務(wù)團(tuán)隊(duì)人員招聘9人參考考試題庫(kù)及答案解析
- 深度解析(2026)GBT 25691-2010《土方機(jī)械 開斗式鏟運(yùn)機(jī) 容量標(biāo)定》
- 深度解析(2026)《GBT 25656-2010信息技術(shù) 中文Linux應(yīng)用編程界面(API)規(guī)范》(2026年)深度解析
- 2025西安交通大學(xué)第一附屬醫(yī)院醫(yī)學(xué)影像科招聘勞務(wù)派遣助理護(hù)士參考考試試題及答案解析
- 共享經(jīng)濟(jì)合同糾紛與法律規(guī)制研究-基于網(wǎng)約車平臺(tái)與駕駛員的勞動(dòng)關(guān)系認(rèn)定
- 2025年煙花爆竹經(jīng)營(yíng)單位安全管理人員考試試題及答案
- 2025天津大學(xué)管理崗位集中招聘15人參考筆試試題及答案解析
- 2025廣東廣州黃埔區(qū)第二次招聘社區(qū)專職工作人員50人考試筆試備考題庫(kù)及答案解析
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試參考題庫(kù)及答案解析
- 2026屆上海市青浦區(qū)高三一模數(shù)學(xué)試卷和答案
- 2026年重慶安全技術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)附答案
- 環(huán)衛(wèi)設(shè)施設(shè)備采購(gòu)項(xiàng)目投標(biāo)方案投標(biāo)文件(技術(shù)方案)
- 微創(chuàng)機(jī)器人手術(shù)基層普及路徑
- 24- 解析:吉林省長(zhǎng)春市2024屆高三一模歷史試題(解析版)
- 2025年黑龍江省公務(wù)員《申論(行政執(zhí)法)》試題含答案
- 福建省福州市倉(cāng)山區(qū)2024-2025學(xué)年三年級(jí)上學(xué)期期末數(shù)學(xué)試題
評(píng)論
0/150
提交評(píng)論