版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
AnIntroductiontoDataMininginmining,theextractionhiddenpredictiveinformationfromlarge
databases,isapowerfulnewtechnologywithpotentialtohelp
paniesfocusonthemostimportantinformationintheirdatawarehouses.mining
toolspredictfuturetrendsbehaviors,allowingbusinessestomakeproactive,
knowledge-drivendecisions.Theautomated,prospectiveanalysesofferedbydata
miningmovebeyondtheanalysesofeventsprovidedbyretrospectivetools
typicalofdecisionsupportsystems.miningtoolscananswerbusinessquestionsthattraditionallywere
tootimeconsumingtoresolve.Theyscourdatabasesforhiddenpatterns,findingpredictiveinformationthatexpertsmaymissbecauseitoutsidetheirexpectations.感謝閱讀Mostpaniesalreadycollectandrefinemassivequantitiesofdata.miningtechniquescanbeimplementedrapidlyonexistingsoftwareand
hardwareplatformstoenhancethevalueofexistinginformationresources,can
beintegratednewproductssystemsastheybroughton-line.When
implementedonhighperformanceclient/serverparallelprocessingputers,dataminingtoolscananalyzemassivedatabasestodeliver
answerstoquestionssuchas,"Whichclientsaremostlikelytorespondtomypromotionalmailing,why?"精品文檔放心下載Thiswhitepaperprovidesanintroductiontothebasictechnologiesdata
mining.Examplesofprofitableapplicationsillustrateitsrelevance
tobusinessenvironmentaswellasadescriptionofhow
warehousearchitecturescanevolvetodeliverthevalueofdataminingto
users.精品文檔放心下載感謝閱讀miningtechniquesaretheresultofaprocessofresearchand
productdevelopment.Thisevolutionbeganwhenbusinessdatafirst
storedputers,continuedwithimprovementsindataaccess,more
recently,generatedtechnologiesthatallowuserstonavigatethrough
theirinrealtime.miningtakesthisevolutionaryprocessbeyond
retrospectivedataaccessandnavigationtoprospective感謝閱讀謝謝閱讀謝謝閱讀proactiveinformationdelivery.miningisreadyforapplicationin
thebusinessmunitybecauseitissupportedthreetechnologiesthat
arenowsufficientlymature:感謝閱讀感謝閱讀謝謝閱讀Massivedatacollection?
?Powerfulmultiprocessorputers
?miningalgorithms謝謝閱讀mercialdatabasesaregrowingunprecedentedrates.ArecentMETAGroup
surveyofdatawarehouseprojectsfoundthat19%ofrespondentsarebeyondthegigabytelevel,59%expecttotherebysecondquarter1996.1Insomeindustries,suchasretail,thesenumberscanbemuchlarger.The
acpanyingneedforimprovedputationalenginescanbeinacost-
effectivemannerparallelmultiprocessorputertechnology.Datamining
algorithmsembodytechniquesthatexistedforleast
10years,butonlyrecentlybeenimplementedasmature,reliable,
understandabletoolsthatconsistentlyoutperformstatistical
methods.謝謝閱讀謝謝閱讀Intheevolutionfrombusinessdatatobusinessinformation,eachnewstepbuilt
uponthepreviousone.Forexample,dynamicaccesscriticalfordrill-throughindatanavigationapplications,andtheabilitytostore
largedatabasesiscriticaltodatamining.Fromtheuser’spointview,thefourstepslistedinTable1wererevolutionarybecausethey
allowedbusinessquestionstoansweredaccuratelyand
quickly.精品文檔放心下載EvolutionaryBusinessQuestionEnablingProductCharacteristics
StepTechnologiesProviders精品文檔放心下載"Whatmytotalputers,tapes,IBM,CDCRetrospective,
Collectionrevenueinthelastdisksstaticfiveyears?"delivery
(1960s)謝謝閱讀Access"WhatunitRelationalOracle,Retrospective,salesindatabasesSybase,dynamic(1980s)England感謝閱讀(RDBMS),Informix,deliveryat感謝閱讀March?"StructuredQueryIBM,recordlevel精品文檔放心下載Language(SQL),Microsoft
ODBC"WhatunitOn-lineanalyticPilot,share,Retrospective,
WarehousingsalesinNewprocessingArbor,dynamic&England(OLAP),Cognos,deliveryMarch?DrilldownmultidimensionalMicrostrategymultiplelevels
Decision謝謝閱讀SupporttoBoston."databases,謝謝閱讀warehouses(1990s)Mining"What’slikelytoAdvancedPilot,Prospective,happentoBostonalgorithms,Lockheed,proactive
(Emergingsalesnext謝謝閱讀multiprocessorIBM,SGI,information
Today)month?Why?"謝謝閱讀puters,massivenumerousdeliverydatabasesstartups
(nascent精品文檔放心下載industry)Table1.StepsintheEvolutionofDataMining.感謝閱讀Thecoreponentsofdataminingtechnologybeenunderdevelopment
fordecades,inresearchareassuchasstatistics,artificial謝謝閱讀intelligence,andmachinelearning.Today,thematurityofthesetechniques,
coupledwithhigh-performancerelationaldatabaseenginesbroaddata
integrationefforts,makethesetechnologiespracticalfor感謝閱讀currentdatawarehouseenvironments.精品文檔放心下載TheScopeofDataMiningDataminingderivesitsnamefromthesimilaritiesbetweensearchingfor
valuablebusinessinformationinalargedatabase—forexample,finding
linkedproductsingigabytesofstorescannerdata—andminingamountainfora
veinvaluableore.Bothprocessesrequireeithersiftingthroughanimmense
amountofmaterial,orintelligentlyprobingittofindexactlywherethevalueresides.
Givendatabasessufficientsizeandquality,miningtechnologycan
generatenewbusinessopportunitiesbyprovidingthesecapabilities:感謝閱讀Automatedpredictiontrendsbehaviors.mining
automatestheoffindingpredictiveinformationinlarge
databases.Questionsthattraditionallyrequiredextensive
hands-onanalysiscannowbeanswereddirectlyfromthedata—
quickly.Atypicalexampleofapredictiveproblemistargeted
marketing.Dataminingusesdataonpromotionalmailingsto精品文檔放心下載感謝閱讀感謝閱讀精品文檔放心下載identifythetargetsmostlikelytomaximizereturninvestmentinfuturemailings.Otherpredictiveproblemsincludeforecastingbankruptcyandotherformsdefault,andidentifyingsegmentsapopulationlikelytorespondsimilarlytogivenevents.精品文檔放心下載謝謝閱讀?Automateddiscoverypreviouslyunknownpatterns.Datamining
toolssweepthroughdatabasesidentifypreviouslyhidden
patternsinstep.Anexamplepatterndiscoveryisthe
analysisofretailsalesdatatoidentifyseeminglyunrelatedproductsthat
areoftenpurchasedtogether.Otherpatterndiscoveryproblemsinclude
detectingfraudulentcreditcardtransactionsand感謝閱讀謝謝閱讀identifyinganomalousdatathatcouldrepresententrykeyingerrors.謝謝閱讀miningtechniquescanyieldthebenefitsofautomationexisting
softwareandhardwareplatforms,beimplementedonsystemsas
existingplatformsareupgradedandnewproductsdeveloped.Whendata
miningtoolsareimplementedonhighperformanceparallelprocessingsystems,
theycananalyzemassivedatabasesinminutes.Fasterprocessingmeansthat
userscanautomaticallyexperimentwithmoremodelstounderstandplexdata.Highspeedmakesitpracticalforuserstoanalyzehuge
quantitiesofdata.databases,inturn,yieldimproved
predictions.感謝閱讀Databasescanbelargerinbothdepthandbreadth:感謝閱讀?Morecolumns.Analystsmustoftenlimitthenumberofvariablesthey
examinewhendoinghands-onanalysisduetotimeconstraints.variablesthatarediscardedbecausetheyseemunimportantmay
carryinformationaboutunknownpatterns.Highperformancedata
miningallowsuserstoexplorethefulldepthofadatabase,without
preselectingasubsetofvariables.感謝閱讀謝謝閱讀謝謝閱讀精品文檔放心下載Morerows.samplesyieldlowerestimationerrorsand?精品文檔放心下載variance,andallowuserstomakeinferencesaboutsmallimportantsegmentsofapopulation.精品文檔放心下載謝謝閱讀ArecentGartnerGroupAdvancedTechnologyResearchNotelistedminingandartificialintelligencethetopthefivekeytechnology
areasthat"willaimpactacrossawiderangeindustrieswithinthenext3to5years."2Gartneralsolistedparallelarchitectures
dataminingastwoofthetop10newtechnologiesinwhichpanieswill
investduringthenext5years.AccordingtoarecentGartnerHPCResearchNote,"Withtherapidadvanceindatacapture,
transmissionandstorage,large-systemsusersincreasinglyneedto精品文檔放心下載implementinnovativewaystominetheafter-marketvaluetheir
vaststoresofdetaildata,employingMPP[massivelyparallelprocessing]
systemstocreatesourcesbusinessadvantage(0.9probability)."3精品文檔放心下載精品文檔放心下載精品文檔放心下載Themostmonlyusedtechniquesindataminingare:感謝閱讀?Artificialneuralnetworks:Non-linearpredictivemodelsthat
learnthroughtrainingandresemblebiologicalneuralnetworksin
structure.精品文檔放心下載感謝閱讀Decisiontrees:Tree-shapedstructuresthatrepresentsetsof?精品文檔放心下載decisions.Thesedecisionsgeneraterulesfortheclassification
ofadataset.SpecificdecisiontreemethodsincludeClassificationand
RegressionTrees(CART)andSquareAutomaticInteraction
Detection(CHAID).謝謝閱讀?Geneticalgorithms:Optimizationtechniquesthatuseprocessessuchasgeneticbination,mutation,andnaturalselectionina謝謝閱讀designbasedontheconceptsofevolution.感謝閱讀NearestneighborAtechniquethatclassifieseachrecord?
inadatasetbasedonabinationoftheclassesthekrecord(s)
mostsimilartoitinahistoricaldataset(wherek1).Sometimes謝謝閱讀謝謝閱讀calledthek-nearestneighbortechnique.精品文檔放心下載Ruleinduction:Theextractionofusefulif-thenfromdata?感謝閱讀basedstatisticalsignificance.精品文檔放心下載ofthesetechnologieshavebeeninuseformorethanadecadespecializedanalysistoolsthatworkwithrelativelysmallvolumesofdata.These
capabilitiesareevolvingtointegratedirectlywithindustry-standarddata
warehouseandOLAPplatforms.Theappendixtothiswhitepaperprovidesa
glossarydataminingterms.精品文檔放心下載DataMiningWorksexactlyisdataminingabletotellyouimportantthingsthatyou
didn'torisgoingtohappennext?Thetechniquethatisto
performthesefeatsindataminingiscalledmodeling.Modelingissimplytheact
ofbuildingamodelinonesituationwhereyouknowtheanswerandthen
applyingittosituationthatyoudon't.Forinstance,ifyoulookingforasunkenSpanishgalleononthehighseasthe
firstthingmightdoistoresearchthetimeswhenSpanishtreasurehadbeenfoundothersinthepast.Youmightnotethatthese謝謝閱讀shipsoftentendtofoundoffthecoastofBermudaandthattherecertaincharacteristicstotheoceancurrents,certainroutesthathavelikely
beentakentheship’scaptainsinthatera.Younotethese謝謝閱讀similaritiesandbuildamodelthatincludesthecharacteristicsthataremontothe
locationsthesesunkentreasures.Withthesemodelsinhandyousailofflooking
fortreasurewhereyourmodelindicatesitmostlikelymightbegivenasimilar
situationinthepast.Hopefully,ifyou'veagoodmodel,youfindyourtreasure.感謝閱讀Thisofmodelbuildingisthussomethingthatpeoplehavebeendoingforalong
time,certainlybeforetheadventofputersordataminingtechnology.Whathappensonputers,however,ismuchdifferentthanthepeoplebuildmodels.putersareloadedupwithlotsinformationavarietyof
situationswhereanswerisknownandthentheminingsoftwaretheputermustrunthroughthatanddistillthe
characteristicsthedatathatshouldintothemodel.Oncemodel
isbuiltitcantheninsituationswhereyoudon'ttheanswer.
Forexample,saythatyouarethedirectorofmarketingforatelemunications
andyou'dliketoacquiresomenewlongdistancephonecustomers.Youcouldrandomlygoandmailcouponstothe
generalpopulation-justyoucouldrandomlysailtheseaslookingfor
sunkentreasure.Inneithercasewouldyouachievetheresultsyoudesiredandof
courseyouhavetheopportunitytomuchbetterthanrandom-youcoulduse
businessexperiencestoredinyourdatabasetobuildamodel.謝謝閱讀Asthemarketingdirectoryouhaveaccesstoaofinformationabout
ofcustomers:theirage,sex,credithistorylongdistancecalling
usage.Thegoodnewsisthatyoualsoaofinformation精品文檔放心下載aboutyourprospectivecustomers:theirage,sex,credithistoryetc.Your
problemisthatyoudon'tthelongdistancecallingusageofthese
prospects(sincetheyaremostnowcustomersofpetition).You'dlike
toconcentrateonthoseprospectshavelargeamountsoflongdistance
usage.Youcanacplishthisbybuildingamodel.Table2illustratesthedatausedforbuildingamodelforcustomerprospectingina
warehouse.謝謝閱讀CustomersProspectsGeneralinformation(e.g.demographicdata)精品文檔放心下載Proprietaryinformation(e.g.Targetcustomertransactions)謝謝閱讀Table2-DataMiningforProspecting謝謝閱讀Thegoalinprospectingistomakesomecalculatedguessesthe
informationinthelowerrighthandquadrantbasedthemodelthatbuildgoingfromCustomerGeneralInformationtoCustomerProprietary
Information.Forinstance,asimplemodelforatelemunicationspanymight謝謝閱讀mycustomerswhomakemorethan$60,000/yearspendmorethan
$80/monthonlongdistance精品文檔放心下載Thismodelcouldthenbeappliedtotheprospectdatatotrytell
somethingabouttheproprietaryinformationthatthistelemunicationspany
notcurrentlyhaveaccessto.Withthismodelinhandcustomers
canbeselectivelytargeted.感謝閱讀Testmarketingisanofdataforthiskindofmodeling.
Miningtheresultsofatestrepresentingabroadrelativelysmall
sampleprospectscanprovideafoundationforidentifyingprospectsintheoverallmarket.Table3showsanothermonscenariofor
buildingmodels:isgoingtohappeninthefuture.精品文檔放心下載感謝閱讀YesterdayTodayTomorrowStaticinformationandKnownKnowncurrentplans(e.g.demographicdata,marketingplans)感謝閱讀精品文檔放心下載information(e.g.KnownKnownTargetcustomertransactions)精品文檔放心下載Table3-DataMiningforPredictions感謝閱讀Ifsomeonetoldyouthathadamodelthatcouldpredictcustomerusage
wouldyouknowifreallyagoodmodel?Thefirstthingyoumighttrywould
betohimtoapplymodeltoyourcustomerbase-where
youalreadyknewtheanswer.Withdatamining,thebestwaytothisisby
settingasidesomeofdatainavaulttoitfromtheminingprocess.
Oncetheminingistheresultscanbetestedagainstthedataheldinthe
vaulttoconfirmthemodel’svalidity.If精品文檔放心下載themodelworks,itsobservationsshouldholdforthevaulted謝謝閱讀AnArchitectureforDataMining謝謝閱讀Toapplytheseadvancedtechniques,theymustbefullyintegrated
adatawarehouseaswellasflexibleinteractivebusinessanalysistools.
Manydataminingtoolscurrentlyoutsidethewarehouse,
requiringextrastepsforextracting,importing,andanalyzingthedata.Furthermore,
wheninsightsrequireoperationalimplementation,精品文檔放心下載integrationwiththewarehousesimplifiestheapplicationofresultsfromdatamining.
Theresultinganalyticdatawarehousecanbeappliedtoimprovebusiness
processesthroughouttheorganization,inareassuchpromotionalcampaignmanagement,frauddetection,newproductrollout,andso
Figure1illustratesarchitectureforadvancedanalysisin
alargedatawarehouse.精品文檔放心下載Figure1-IntegratedMiningArchitecture感謝閱讀Theidealstartingpointisadatawarehousecontainingabinationinternaldatatrackingcustomercontactcoupledwithexternalmarketaboutpetitoractivity.Backgroundinformationpotentialcustomersalso
providesanexcellentbasisforprospecting.Thiswarehousecanimplementedinavarietyrelationaldatabasesystems:精品文檔放心下載Sybase,Oracle,Redbrick,soshouldoptimizedforflexiblefastdataaccess.謝謝閱讀AnOLAP(On-LineAnalyticalProcessing)serverenablesamore
sophisticatedend-userbusinessmodeltobeappliedwhennavigatingthedata
warehouse.Themultidimensionalstructuresallowtheusertoanalyze
thedataastheytoviewtheirbusiness–summarizingbyline,
region,andotherperspectivestheirbusiness.TheData謝謝閱讀MiningServermustbeintegratedthedatawarehousetheOLAPserver
toembedROI-focusedbusinessanalysisdirectlythisinfrastructure.An
advanced,process-centricmetadatatemplatedefinesthedataminingobjectivesforspecificbusinessissueslikecampaign
management,prospecting,andpromotionoptimization.Integrationwiththedata
warehouseenablesoperationaldecisionstodirectlyimplementedand
tracked.Asthewarehousegrowswithnewdecisionsandresults,the
organizationcancontinuallyminethepracticesandapplythemtofuturedecisions.精品文檔放心下載Thisdesignrepresentsafundamentalshiftconventionaldecisionsupport
systems.thansimplydeliveringdatatotheuserthroughqueryreportingsoftware,theAdvancedAnalysisServerapplies
users’businessdirectlytothewarehouseanda
proactiveanalysisofthemostrelevantinformation.Theseresultsenhancethe
metadataintheOLAPServerbyprovidingadynamicmetadatalayerthat
representsadistilledofthedata.Reporting,visualization,andotheranalysis
toolscanthenbeappliedtoplanfutureactionsandconfirmtheimpactofthoseplans.感謝閱讀ProfitableApplicationsArangeofdeployedsuccessfulapplicationsofdatamining.
Whileearlyadoptersofthistechnologyhavetendedtoinformation-intensiveindustriessuchfinancialservicesdirectmail
marketing,thetechnologyisapplicabletoanypanylookingtoleveragealarge
warehousetobettermanagetheircustomerrelationships.Twocritical
factorsforsuccessdataminingalarge,well-integrateddata
warehouseandawell-definedunderstanding謝謝閱讀ofthebusinessprocesswithinwhichdataminingistobeapplied(such
ascustomerprospecting,retention,campaignmanagement,soon).謝謝閱讀Somesuccessfulapplicationareasinclude:感謝閱讀Apharmaceuticalpanyanalyzeitsrecentsalesforceactivity
andtheirresultstoimprovetargetingofhigh-valuephysiciansand謝謝閱讀determinewhichmarketingactivitieshavethegreatestimpact
inthenextfewmonths.Thedataneedstoincludepetitormarketactivity
aswellasinformationaboutthelocalhealthcaresystems.謝謝閱讀Theresultscandistributedtotheforceviaawide-areanetwork
thatenablestherepresentativestoreviewtheremendationsfromthe
perspectivethekeyattributesinthedecisionprocess.Theongoing,
dynamicanalysisofthedatawarehouseallowspracticesfromthroughouttheorganizationtobeappliedinspecificsales
situations.感謝閱讀?Acreditcardcanleverageitsvastwarehousecustomer
transactiondatatoidentifycustomersmostlikelytobeinterested
inacreditproduct.Usingasmalltestmailing,theattributesof
customersanaffinityfortheproductcanbeidentified.
Recentprojectshaveindicatedmorethana20-folddecreaseincostsfor
targetedmailingcampaignsoverconventionalapproaches.
?Adiversifiedtransportationwithalargedirectsalesforce
canapplydataminingtoidentifythebestprospectsforits
services.Usingdataminingtoanalyzeitsowncustomerexperience,
thiscanbuildauniquesegmentationidentifyingtheattributeshigh-valueprospects.Applyingthissegmentationto謝謝閱讀精品文檔放心下載感謝閱讀感謝閱讀謝謝閱讀ageneralbusinessdatabasesuchthoseprovidedbyDun&
Bradstreetcanyieldaprioritizedlistofprospectsbyregion.謝謝閱讀?Alargeconsumerpackagegoodspanycanapplydataminingtoimprove
itssalesprocesstoretailers.Datafromconsumerpanels,
shipments,petitoractivitycanbeappliedtounderstandthe
reasonsforbrandandstoreswitching.Throughthisanalysis,the
manufacturerselectpromotionalstrategiesthatreach
theirtargetcustomersegments.謝謝閱讀謝謝閱讀精品文檔放心下載精品文檔放心下載Eachoftheseexampleshaveaclearmonground.Theyleveragetheknowledge
aboutcustomersimplicitinadatawarehousetoreducecostsimprovethe
valueofcustomerrelationships.Theseorganizationscannowfocustheirefforts
onthemostimportant(profitable)customersandprospects,designtargetedmarketingstrategiestoreachthem.精品文檔放心下載Conclusionprehensivedatawarehousesthatintegrateoperationaldatawithcustomer,
supplier,andmarketinformationhaveresultedinanexplosioninformation.
petitionrequirestimelysophisticatedanalysisan謝謝閱讀integratedviewthedata.However,thereisagrowinggapbetweenmore
powerfulstorageandretrievalsystemstheusers’abilityto
effectivelyanalyzeactontheinformationtheycontain.BothrelationalOLAPtechnologieshavetremendouscapabilitiesfor感謝閱讀navigatingmassivedatawarehouses,bruteforcenavigationdata
isenough.Anewtechnologicalleapisneededtostructureandprioritize
informationforspecificend-userproblems.Thedatamining感謝閱讀toolscanmakethisleap.Quantifiablebusinessbenefitshavebeenproventhrough
theintegrationdataminingwithcurrentinformationsystems,newproducts
areonthehorizonthatwillbringthisintegrationto感謝閱讀anevenwideraudienceusers.精品文檔放心下載METAGroupApplicationDevelopmentStrategies:"DataMiningforWarehouses:UncoveringHiddenPatterns.",7/13/95.感謝閱讀1GartnerGroupAdvancedTechnologiesandApplicationsResearchNote,品文檔放心下載2/1/95.2精3GartnerGroupPerformanceputingResearchNote,1/31/95.精品文檔放心下載GlossaryofDataMiningTermsanalyticalmodelAstructureprocessforanalyzingadataset.For
example,adecisiontreeisamodelforthe
classificationofadataset.謝謝閱讀精品文檔放心下載謝謝閱讀anomalousdataDatathatresultfromerrors(forexample,dataentrykeyingerrors)orthatrepresentunusualevents.精品文檔放心下載Anomalousdatashouldbeexaminedcarefullyitmaycarryimportantinformation.謝謝閱讀精品文檔放心下載artificialpredictivethatlearnthroughneuralnetworksandresemblebiologicalneuralnetworksinstructure.感謝閱讀ClassificationandRegressionTrees.Adecisiontree
techniqueusedforclassificationofadataset.謝謝閱讀Providesasetofrulesthatyouapplytoa(unclassified)datasettopredictwhichrecordshaveagivenoute.Segmentsadatasetbycreating2-way
splits.RequireslessdatapreparationthanCHAID.精品文檔放心下載精品文檔放心下載謝謝閱讀謝謝閱讀CHAIDSquareAutomaticInteractionDetection.A感謝閱讀decisiontreetechniqueforclassificationofa
dataset.Providesasetofrulesthatyoucanapply
toa(unclassified)datasettowhichwill
agivenoute.Segmentsadatasetbyusingchisquare
teststocreatemulti-waysplits.Preceded,andrequires
moredatapreparationthan,精品文檔放心下載CART.感謝閱讀classificationTheprocessofdividingadatasetmutually
exclusivegroupssuchthattheofgroup
areas"close"aspossibletoanother,anddifferent
groups"far"aspossiblefromanother,where
distanceismeasuredrespecttospecificvariable(s)
youaretryingtopredict.For精品文檔放心下載example,atypicalclassificationproblemistodivide
adatabaseintogroupsthatarehomogeneousaspossiblewithtoa
creditworthinessvariablewithvalues"Good""Bad."精品文檔放心下載感謝閱讀clusteringTheprocessdividingadatasetintomutually
exclusivegroupssuchthattheofgroup
areas"close"aspossibletoanother,and謝謝閱讀謝謝閱讀differentgroupsareas"far"aspossiblefromanother,
wheredistanceismeasuredwithtoavailablevariables.感謝閱讀cleansingTheprocessofensuringthatvaluesinadatasetareconsistentcorrectlyrecorded.謝謝閱讀精品文檔放心下載miningTheextractionhiddenpredictiveinformationfromlargedatabases.精品文檔放心下載navigationTheprocessofviewingdifferentdimensions,slices,
levelsofdetailofamultidimensionaldatabase.
OLAP.感謝閱讀感謝閱讀Thevisualinterpretationplexrelationshipsinvisualizationmultidimensionaldata.精品文檔放心下載謝謝閱讀warehouseAsystemforstoringanddeliveringmassivequantitiesofdata.精品文檔放心下載decisiontreeAtree-shapedstructurethatrepresentsasetof感謝閱讀decisions.Thesedecisionsgeneraterulesforthe
classificationofadataset.SeeCARTCHAID.謝謝閱讀謝謝閱讀dimensionInaorrelationaldatabase,eachfieldina
recordrepresentsadimension.Inamultidimensional
database,adimensionisasetofsimilarentities;謝謝閱讀感謝閱讀forexample,amultidimensionalsalesdatabasemight
includethedimensionsProduct,Time,City.感謝閱讀謝謝閱讀exploratorydataTheuseofgraphicalanddescriptivestatistical
analysistechniquestolearnaboutthestructureadataset.精品文檔放心下載geneticOptimizationtechniquesthatuseprocessessuchalgorithmsgeneticbination,mutation,andnatura
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 肝衰竭患者人工肝治療的心理干預(yù)策略
- 衛(wèi)生院合作醫(yī)療工作制度
- 衛(wèi)生部激素管理制度
- 足月小樣兒護(hù)理常見問題解答
- 肝硬化患者姑息治療與癥狀管理策略
- 肝癌靶向與免疫聯(lián)合的臨床轉(zhuǎn)化進(jìn)展
- 你比劃我猜課件
- 公民基本義務(wù)課件
- 聯(lián)邦學(xué)習(xí)提升醫(yī)療科研數(shù)據(jù)協(xié)同效率方案設(shè)計(jì)
- 聯(lián)合靶向藥物微環(huán)境重塑策略
- 泰康入職測評題庫及答案
- 天津市河?xùn)|區(qū)2026屆高一上數(shù)學(xué)期末考試試題含解析
- DB37-T6005-2026人為水土流失風(fēng)險(xiǎn)分級評價(jià)技術(shù)規(guī)范
- 彈性工作制度規(guī)范
- 仁愛科普版(2024)八年級上冊英語Unit1~Unit6補(bǔ)全對話練習(xí)題(含答案)
- 腎寶膠囊產(chǎn)品課件
- 2026河南安陽市兵役登記參考考試試題及答案解析
- 買車背戶協(xié)議書
- 護(hù)理投訴糾紛防范及處理
- 煙囪技術(shù)在血管腔內(nèi)修復(fù)術(shù)中的應(yīng)用教案
- 檢驗(yàn)科甲流實(shí)驗(yàn)室檢測流程
評論
0/150
提交評論