版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ModernPortfolioTheory
TheFactorModelsand
TheArbitragePricingTheoryChapter8ByDingzhaoyongModernPortfolioTheory
TheFa1Return-generatingProcess
andFactorModelsReturn-generatingprocessIsastatisticalmodelthatdescribehowreturnonasecurityisproduced.ThetaskofidentifyingtheMarkowitzefficientsetcanbegreatlysimplifiedbyintroducingthisprocess.Themarketmodelisakindofthisprocess,andtherearemanyothers.Return-generatingProcess
and2Return-generatingProcess
andFactorModelsFactormodelsThesemodelsassumethatthereturnonasecurityissensitivetothemove-mentsofvariousfactorsorindices.Inattemptingtoaccuratelyestimateexpectedreturns,variances,andcovariancesforsecurities,multiple-factormodelsarepotentiallymoreusefulthanthemarketmodel.Return-generatingProcess
and3Return-generatingProcess
andFactorModelsImplicitintheconstructionofafactormodelistheassumptionthatthereturnsontwosecuritieswillbecorrelatedonlythroughcommonreactionstooneormoreofthespecifiedinthemodel.Anyaspectofasecurity’sreturnunexplainedbythefactormodelisuncorrelatedwiththeuniqueelementsofreturnsonothersecurities.Return-generatingProcess
and4Return-generatingProcess
andFactorModelsAfactormodelisapowerfultoolforportfoliomanagement.Itcansupplytheinformationneededtocalculateexpectedreturns,variances,andcovariancesforeverysecurity,whicharethenecessaryconditionsfordeterminingthecurvedMarkowitzefficientset.Itcanalsobeusedtocharacterizeaportfolio’ssensitivitytomovementinthefactors.Return-generatingProcess
and5Return-generatingProcess
andFactorModelsFactormodelssupplythenecessarylevelofabstractionincalculatingcovariances.Theproblemofcalculatingcovariancesamongsecuritiesrisesexponentiallyasthenumberofsecuritiesanalyzedincrease.Practically,abstractionisanessentialstepinidentifyingtheMarkowitzset.Return-generatingProcess
and6Return-generatingProcess
andFactorModelsFactormodelsprovideinvestmentmanagerswithaframeworktoidentifyimportantfactorsintheeconomyandthemarketplaceandtoassesstheextenttowhichdifferentsecuritiesandportfolioswillrespondtochangesinthesefactors.Aprimarygoalofsecurityanalysisistodeterminethesefactorsandthesensitivitiesofsecurityreturntomovementsinthesefactors.Return-generatingProcess
and7One-FactorModelsTheone-factormodelsrefertothereturn-generatingprocessforsecuritiesinvolvesasinglefactor.Thesefactorsmaybeoneofthefollowings:ThepredictedgrowthrateinGDPTheexpectedreturnonmarketindexThegrowthrateofindustrialproduc-tion,etc.One-FactorModelsTheone-facto8One-FactorModelsAnexamplePage295:Figure11.1One-FactorModelsAnexample9One-FactorModelsGeneralizingtheexampleAssumptionsTherandomerrortermandthefactorareuncorrelated.(Why?)Therandomerrortermsofanytwosecuritiesareuncorrelated.(Why?)One-FactorModelsGeneralizing10One-FactorModelsExpectedreturnVarianceCovarianceOne-FactorModelsExpectedretu11One-FactorModelsTwoimportantfeaturesofone-factormodelThetangencyportfolioiseasytoget.Thereturnsonallsecuritiesrespondtoasinglecommonfactorgreatersimplifiesthetaskofidentifyingthetangencyportfolio.Thecommonresponsivenessofsecuritiestothefactoreliminatestheneedtoestimatedirectlythecovariancesbetweenthesecurities.Thenumberofestimates:3N+2One-FactorModelsTwoimportant12One-FactorModelsThefeatureofdiversificationistrueofanyone-factormodel.Factorrisk:Nonfactorrisk:DiversificationleadstoanaveragingoffactorriskDiversificationreducesnonfactorriskOne-FactorModelsThefeatureo13One-FactorModelsOne-FactorModels14Multiple-FactorModelsThehealthoftheeconomyeffectsmostfirms,buttheeconomyisnotasimple,monolithicentity.SeveralcommoninfluenceswithpervasiveeffectsmightbeidentifiedThegrowthrateofGDPThelevelofinterestrateTheinflationrateThelevelofoilpriceMultiple-FactorModelsTheheal15Multiple-FactorModelsTwo-FactorModelsAssumethatthereturn-generatingprocesscontainstwofactors.Multiple-FactorModelsTwo-Fact16Multiple-FactorModelsThesecondequationprovidesatwo-factormodelofacompany’sstock,whosereturnsareaffectedbyexpectationsconcerningboththegrowthrateinGDPandtherateofinflation.Page301:Figure11.2Tothisscatterofpointsisfitatwo-dimensionalplanebyusingthestatisticaltechniqueofmultiple-regressionanalysis.Multiple-FactorModelsTheseco17Multiple-FactorModelsFourparametersneedtobeestimatedforeachsecuritywiththetwo-factormodel:ai,
bi1,bi2,andthestandarddeviationoftherandomerrorterm.Foreachofthefactors,twoparametersneedtobeestimated.Theseparametersaretheexpectedvalueofeachfactorandthevarianceofeachfactor.Finally,thecovariancebetweenfactors.Multiple-FactorModelsFourpar18Multiple-FactorModelsExpectedreturnVarianceCovarianceMultiple-FactorModelsExpected19Multiple-FactorModelsThetangencyportfolioTheinvestorcanproceedtouseanoptimizertoderivethecurveefficientset.DiversificationDiversificationleadstoanaveragingoffactorrisk.Diversificationcansubstantiallyreducenonfactorrisk.Forawell-diversifiedportfolio,nonfactorriskwillbeinsignificant.Multiple-FactorModelsThetang20Multiple-FactorModelsMultiple-FactorModels21Multiple-FactorModelsSector-FactorModelsSector-factormodelsarebasedontheacknowledgethatthepricesofsecuritiesinthesameindustryoreconomicsectoroftenmovetogetherinresponsetochangesinprospectsforthatsector.Tocreateasector-factormodel,eachsecuritymustbeassignedtoasector.Multiple-FactorModelsSector-F22Multiple-FactorModelsAtwo-sector-factormodelTherearetwosectorsandeachsecuritymustbeassignedtooneofthem.Boththenumberofsectorsandwhateachsectorconsistsofisanopenmatterthatislefttotheinvestortodecide.Thereturn-generatingprocessforsecuritiesisofthesamegeneralformasthetwo-factormodel.Multiple-FactorModelsAtwo-se23Multiple-FactorModelsDifferingfromthetwo-factormodel,withtwo-sector-factormodel,F1andF2nowdenotesector-factors1and2,respectively.Anyparticularsecuritybelongstoeithersector-factor1orsector-factor2butnotboth.Multiple-FactorModelsDifferin24Multiple-FactorModelsIngeneral,whereasfourparametersneedtobeestimatedforeachsecuritywithatwo-factormodel(ai1,bi1,bi2
,ei,),onlythreeparametersneedtobeestimatedwithatwo-sector-factormodel.(ai1,ei,andeitherbi1orbi2
).Multiple-factormodelsMultiple-FactorModelsIngener25EstimatingFactorModelsTherearemanymethodsofestimatingfactormodels.Theremethodscanbegroupedintothreemajorapproaches:Time-seriesapproachesCross-sectionalapproachesFactor-analyticapproachesEstimatingFactorModelsThere26FactorModelsandEquilibriumAfactormodelisnotanequilibriummodelofassetpricing.Bothequationshowthattheexpectedreturnonthestockisrelatedtoacharacteristicofthestock,biori.Thelargerthesizeofthecharacteristic,thelargertheasset’sreturn.FactorModelsandEquilibrium27FactorModelsandEquilibriumThekeydifferenceisaiandrf.TheonlycharacteristicofthestockthatdetermineitsexpectedreturnaccordingtotheCAPMisii,asrffdenotestherisk-freerateandisthesameforallsecurities.Withthefactormodel,thereisasecondcharacteristicofthestockthatneedstobeestimatedtodeterminethestock’sexpectedreturn,aii.FactorModelsandEquilibriumT28FactorModelsandEquilibriumAsthesizeofaidiffersfromonestocktoanother,itpresentsthefactormodelfrombeinganequilibriummodel.Twostockswiththesamevalueofbicanhavedramaticallydifferentexpectedreturnsaccordingtoafactormodel.Twostockswiththesamevalueofiwillhavethesameexpectedreturnaccordingtotheequilibrium-basedCAPM.FactorModelsandEquilibriumA29FactorModelsandEquilibriumTherelationshipbetweentheparametersaiandbioftheone-factormodelandthesingleparameterioftheCAPM.IftheexpectedreturnsaredeterminedaccordingtotheCAPMandactualreturnsaregeneratedbytheone-factormarketmodel,thentheaboveequationsmustbetrue.FactorModelsandEquilibriumT30ArbitragePricingTheoryAPTisatheorywhichdescribeshowasecurityispricedjustlikeCAPM.Movingawayfromconstructionofmean-varianceefficientportfolio,APTinsteadcalculatesrelationsamongexpectedratesofreturnthatwouldruleoutrisklessprofitsbyanyinvestorinwell-functioningcapitalmarkets.ArbitragePricingTheoryAPTi31ArbitragePricingTheoryAPTmakesfewassumptions.Oneprimaryassumptionisthateachinvestor,whengiventheopportunitytoincreasethereturnofhisorherportfoliowithoutincreasingitsrisk,willproceedtodoso.Thereexistsanarbitrageopportunityandtheinvestorcanuseanarbitrageportfolios.ArbitragePricingTheoryAPTma32ArbitrageOpportunitiesArbitrageistheearningofrisklessprofitbytakingadvantageofdifferentialpricingforthesamephysicalassetorsecurity.Ittypicallyentailsthesaleofasecurityatarelativelyhighpriceandthesimultaneouspurchaseofthesamesecurity(oritsfunctionalequivalent)atarelativelylowprice.ArbitrageOpportunitiesArbitra33ArbitrageOpportunitiesArbitrageactivityisacriticalelementofmodern,efficientsecuritymarkets.Ittakesrelativelyfewofthisactiveinvestorstoexploitarbitragesituationsand,bytheirbuyingandsellingactions,eliminatetheseprofitopportunities.SomeinvestorshavegreaterresourcesandinclinationtoengageIarbitragethanothers.ArbitrageOpportunitiesArbitra34ArbitrageOpportunitiesZero-investmentportfolioAportfolioofzeronetvalue,establishedbybuyingandshortingcomponentsecurities.Arisklessarbitrageopportunityariseswhenaninvestorcanconstructazero-investmentportfoliothatwillyieldasureprofit.ArbitrageOpportunitiesZero-in35ArbitrageOpportunitiesToconstructazero-investmentportfolio,onehastobeabletosellshortatleastoneassetandusetheproceedstopurchaseonormoreassets.Evenasmallinvestor,usingborrowedmoneyinthiscase,cantakealargepositioninsuchaportfolio.Therearemanyarbitragetactics.ArbitrageOpportunitiesTocons36ArbitrageOpportunitiesAnexample:Fourstocksandfourpossiblescenariostherateofreturninfourscenarios181inthetextbookTheexpectedreturns,standarddeviationsandcorrelationsdonotrevealanyabnormalitytothenakedeye.ArbitrageOpportunitiesAnexam37ArbitrageOpportunitiesThecriticalpropertyofanarbitrageportfolioisthatanyinvestor,regardlessofriskaversionorwealth,willwanttotakeaninfinitepositioninitsothatprofitswillbedriventoaninfinitelevel.Theselargepositionswillforcesomepricesupanddownuntilarbitrageopportunitiesvanishes.ArbitrageOpportunitiesThecri38FactorModelsand
PrincipleofArbitrageAlmostarbitrageopportunitiescaninvolvesimilarsecuritiesorportfolios.Thatsimilaritycanbedefinedinmanyways.Onewayistheexposuretopervasivefactorsthataffectsecurityprices.AnexamplePage324FactorModelsand
Principleo39FactorModelsand
PrincipleofArbitrageAfactormodelimpliesthatsecuritiesorportfolioswithequal-factorsensitivitieswillbehaveinthesamewayexceptfornonfactorrisk.APTstartsoutbymakingtheassumptionthatsecurityreturnsarerelatedtoanunknownnumberofunknownfactors.Securitieswiththesamefactorsensitivitiesshouldofferthesameexpectedreturns.FactorModelsand
Principleo40ArbitragePortfoliosAnarbitrageportfoliomustsatisfy:AnetmarketvalueofzeroNosensitivitytoanyfactorApositiveexpectedreturnArbitragePortfoliosAnarbitra41ArbitragePortfoliosThearbitrageportfolioisattractivetoanyinvestorwhodesiresahigherreturnandisnotconcernedwithnonfactorrisk.Itrequiresnoadditionaldollarinvestment,ithasnofactorrisk,andithasapositiveexpectedreturn.ArbitragePortfoliosThearbitr42One-FactorModelandAPTPricingeffectsonarbitrageportfolioThebuying-and-sellingactivitywillcontinueuntilallarbitragepossibilitiesaresignificantreducedoreliminatedTherewillexistanapproximatelylinearrelationshipbetweenexpectedreturnsandsensitivitiesofthefollowingsort:One-FactorModelandAPTPricin43One-FactorModelandAPTTheequationistheassetpricingequationoftheAPTwhenreturnsaregeneratedbyonefactorThelinearequationmeansthatinequili-briumtherewillbealinearrelationshipbetweenexpectedreturnsandsensitivities.Theexpectedreturnonanysecurityis,inequilibrium,alinearfunctionofthesecurity’ssensitivitytothefactor,biOne-FactorModelandAPTTheeq44One-FactorModelandAPTAnysecuritythathasafactorsensitivityandexpectedreturnsuchthatitliesoffthelinewillbemispricedaccordingtotheAPTandwillpresentinvestorswiththeopportunityofformingarbitrageportfolios.Page327:Figure12.1One-FactorModelandAPTAnyse45One-FactorModelandAPTInterpretingtheAPTpricingequationRiskfreeasset,rfPurefactorportfolio,p*One-FactorModelandAPTInterp46Two-FactorModelAndAPTThetwo-factormodelArbitrageportfoliosAnetmarketvalueofzeroNosensitivitytoanyfactorApositiveexpectedreturnTwo-FactorModelAndAPTThetw47Two-FactorModelAndAPTPricingeffectsTwo-FactorModelAndAPTPricin48Two-FactorModelAndAPT1istheexpectedreturnontheportfoliowhichisknownasapurefactorportfolioorpurefactorplay,becauseithas:Unitsensitivitytoonefactor(F1,b1=1)Nosensitivitytoanyotherfactor(F2,b2=0)ZerononfactorriskThisportfolioisawell-diversificationportfoliothathasunitsensitivitytothefirstfactorandzerosensitivitytothesecondfactor.Two-FactorModelAndAPT1is49Two-FactorModelAndAPTItisthesamewith2.Itisthewell-diversificationportfoliothathaszerosensitivitytothefirstfactorandunitsensitivitytothesecondfactor,meaningthatithasb1=0andb2=1.Suchasaportfoliothathaszerosensitivitytopredictedindustrialproductionandunitsensitivitytopredictedinflationwouldhaveanexpectedreturnof6%.Two-FactorModelAndAPTItis50Multiple-factormodelTheAPTpricingequationMultiple-FactorModel
AndAPTMultiple-factormodelMultiple-51TheAPTAndTheCAPMCommonpointBothrequireequilibriumBothhavealmostsimilarequationDistinctionsDifferentequilibriummechanismManyinvestorsv.s.FewinvestorsDifferentPortfolioMarketportfoliov.s.Well-diversifyedP.TheAPTAndTheCAPMCommonpoi52SummaryTheFactorModelsOne-factormodelsMulti-factormodelsFactormodelsandequilibriumArbitrageopportunityandportfolioThearbitragepricingequationOne-factorequationMulti-factorequationSummaryTheFactorModels53AssignmentsForchapter8ReadingsPage282through301Page308through321ExercisesPage304:14,15;Page323:4,13Q/A:Page302:3Page324:8AssignmentsForchapter8Readi54ModernPortfolioTheory
TheFactorModelsand
TheArbitragePricingTheoryChapter8ByDingzhaoyongModernPortfolioTheory
TheFa55Return-generatingProcess
andFactorModelsReturn-generatingprocessIsastatisticalmodelthatdescribehowreturnonasecurityisproduced.ThetaskofidentifyingtheMarkowitzefficientsetcanbegreatlysimplifiedbyintroducingthisprocess.Themarketmodelisakindofthisprocess,andtherearemanyothers.Return-generatingProcess
and56Return-generatingProcess
andFactorModelsFactormodelsThesemodelsassumethatthereturnonasecurityissensitivetothemove-mentsofvariousfactorsorindices.Inattemptingtoaccuratelyestimateexpectedreturns,variances,andcovariancesforsecurities,multiple-factormodelsarepotentiallymoreusefulthanthemarketmodel.Return-generatingProcess
and57Return-generatingProcess
andFactorModelsImplicitintheconstructionofafactormodelistheassumptionthatthereturnsontwosecuritieswillbecorrelatedonlythroughcommonreactionstooneormoreofthespecifiedinthemodel.Anyaspectofasecurity’sreturnunexplainedbythefactormodelisuncorrelatedwiththeuniqueelementsofreturnsonothersecurities.Return-generatingProcess
and58Return-generatingProcess
andFactorModelsAfactormodelisapowerfultoolforportfoliomanagement.Itcansupplytheinformationneededtocalculateexpectedreturns,variances,andcovariancesforeverysecurity,whicharethenecessaryconditionsfordeterminingthecurvedMarkowitzefficientset.Itcanalsobeusedtocharacterizeaportfolio’ssensitivitytomovementinthefactors.Return-generatingProcess
and59Return-generatingProcess
andFactorModelsFactormodelssupplythenecessarylevelofabstractionincalculatingcovariances.Theproblemofcalculatingcovariancesamongsecuritiesrisesexponentiallyasthenumberofsecuritiesanalyzedincrease.Practically,abstractionisanessentialstepinidentifyingtheMarkowitzset.Return-generatingProcess
and60Return-generatingProcess
andFactorModelsFactormodelsprovideinvestmentmanagerswithaframeworktoidentifyimportantfactorsintheeconomyandthemarketplaceandtoassesstheextenttowhichdifferentsecuritiesandportfolioswillrespondtochangesinthesefactors.Aprimarygoalofsecurityanalysisistodeterminethesefactorsandthesensitivitiesofsecurityreturntomovementsinthesefactors.Return-generatingProcess
and61One-FactorModelsTheone-factormodelsrefertothereturn-generatingprocessforsecuritiesinvolvesasinglefactor.Thesefactorsmaybeoneofthefollowings:ThepredictedgrowthrateinGDPTheexpectedreturnonmarketindexThegrowthrateofindustrialproduc-tion,etc.One-FactorModelsTheone-facto62One-FactorModelsAnexamplePage295:Figure11.1One-FactorModelsAnexample63One-FactorModelsGeneralizingtheexampleAssumptionsTherandomerrortermandthefactorareuncorrelated.(Why?)Therandomerrortermsofanytwosecuritiesareuncorrelated.(Why?)One-FactorModelsGeneralizing64One-FactorModelsExpectedreturnVarianceCovarianceOne-FactorModelsExpectedretu65One-FactorModelsTwoimportantfeaturesofone-factormodelThetangencyportfolioiseasytoget.Thereturnsonallsecuritiesrespondtoasinglecommonfactorgreatersimplifiesthetaskofidentifyingthetangencyportfolio.Thecommonresponsivenessofsecuritiestothefactoreliminatestheneedtoestimatedirectlythecovariancesbetweenthesecurities.Thenumberofestimates:3N+2One-FactorModelsTwoimportant66One-FactorModelsThefeatureofdiversificationistrueofanyone-factormodel.Factorrisk:Nonfactorrisk:DiversificationleadstoanaveragingoffactorriskDiversificationreducesnonfactorriskOne-FactorModelsThefeatureo67One-FactorModelsOne-FactorModels68Multiple-FactorModelsThehealthoftheeconomyeffectsmostfirms,buttheeconomyisnotasimple,monolithicentity.SeveralcommoninfluenceswithpervasiveeffectsmightbeidentifiedThegrowthrateofGDPThelevelofinterestrateTheinflationrateThelevelofoilpriceMultiple-FactorModelsTheheal69Multiple-FactorModelsTwo-FactorModelsAssumethatthereturn-generatingprocesscontainstwofactors.Multiple-FactorModelsTwo-Fact70Multiple-FactorModelsThesecondequationprovidesatwo-factormodelofacompany’sstock,whosereturnsareaffectedbyexpectationsconcerningboththegrowthrateinGDPandtherateofinflation.Page301:Figure11.2Tothisscatterofpointsisfitatwo-dimensionalplanebyusingthestatisticaltechniqueofmultiple-regressionanalysis.Multiple-FactorModelsTheseco71Multiple-FactorModelsFourparametersneedtobeestimatedforeachsecuritywiththetwo-factormodel:ai,
bi1,bi2,andthestandarddeviationoftherandomerrorterm.Foreachofthefactors,twoparametersneedtobeestimated.Theseparametersaretheexpectedvalueofeachfactorandthevarianceofeachfactor.Finally,thecovariancebetweenfactors.Multiple-FactorModelsFourpar72Multiple-FactorModelsExpectedreturnVarianceCovarianceMultiple-FactorModelsExpected73Multiple-FactorModelsThetangencyportfolioTheinvestorcanproceedtouseanoptimizertoderivethecurveefficientset.DiversificationDiversificationleadstoanaveragingoffactorrisk.Diversificationcansubstantiallyreducenonfactorrisk.Forawell-diversifiedportfolio,nonfactorriskwillbeinsignificant.Multiple-FactorModelsThetang74Multiple-FactorModelsMultiple-FactorModels75Multiple-FactorModelsSector-FactorModelsSector-factormodelsarebasedontheacknowledgethatthepricesofsecuritiesinthesameindustryoreconomicsectoroftenmovetogetherinresponsetochangesinprospectsforthatsector.Tocreateasector-factormodel,eachsecuritymustbeassignedtoasector.Multiple-FactorModelsSector-F76Multiple-FactorModelsAtwo-sector-factormodelTherearetwosectorsandeachsecuritymustbeassignedtooneofthem.Boththenumberofsectorsandwhateachsectorconsistsofisanopenmatterthatislefttotheinvestortodecide.Thereturn-generatingprocessforsecuritiesisofthesamegeneralformasthetwo-factormodel.Multiple-FactorModelsAtwo-se77Multiple-FactorModelsDifferingfromthetwo-factormodel,withtwo-sector-factormodel,F1andF2nowdenotesector-factors1and2,respectively.Anyparticularsecuritybelongstoeithersector-factor1orsector-factor2butnotboth.Multiple-FactorModelsDifferin78Multiple-FactorModelsIngeneral,whereasfourparametersneedtobeestimatedforeachsecuritywithatwo-factormodel(ai1,bi1,bi2
,ei,),onlythreeparametersneedtobeestimatedwithatwo-sector-factormodel.(ai1,ei,andeitherbi1orbi2
).Multiple-factormodelsMultiple-FactorModelsIngener79EstimatingFactorModelsTherearemanymethodsofestimatingfactormodels.Theremethodscanbegroupedintothreemajorapproaches:Time-seriesapproachesCross-sectionalapproachesFactor-analyticapproachesEstimatingFactorModelsThere80FactorModelsandEquilibriumAfactormodelisnotanequilibriummodelofassetpricing.Bothequationshowthattheexpectedreturnonthestockisrelatedtoacharacteristicofthestock,biori.Thelargerthesizeofthecharacteristic,thelargertheasset’sreturn.FactorModelsandEquilibrium81FactorModelsandEquilibriumThekeydifferenceisaiandrf.TheonlycharacteristicofthestockthatdetermineitsexpectedreturnaccordingtotheCAPMisii,asrffdenotestherisk-freerateandisthesameforallsecurities.Withthefactormodel,thereisasecondcharacteristicofthestockthatneedstobeestimatedtodeterminethestock’sexpectedreturn,aii.FactorModelsandEquilibriumT82FactorModelsandEquilibriumAsthesizeofaidiffersfromonestocktoanother,itpresentsthefactormodelfrombeinganequilibriummodel.Twostockswiththesamevalueofbicanhavedramaticallydifferentexpectedreturnsaccordingtoafactormodel.Twostockswiththesamevalueofiwillhavethesameexpectedreturnaccordingtotheequilibrium-basedCAPM.FactorModelsandEquilibriumA83FactorModelsandEquilibriumTherelationshipbetweentheparametersaiandbioftheone-factormodelandthesingleparameterioftheCAPM.IftheexpectedreturnsaredeterminedaccordingtotheCAPMandactualreturnsaregeneratedbytheone-factormarketmodel,thentheaboveequationsmustbetrue.FactorModelsandEquilibriumT84ArbitragePricingTheoryAPTisatheorywhichdescribeshowasecurityispricedjustlikeCAPM.Movingawayfromconstructionofmean-varianceefficientportfolio,APTinsteadcalculatesrelationsamongexpectedratesofreturnthatwouldruleoutrisklessprofitsbyanyinvestorinwell-functioningcapitalmarkets.ArbitragePricingTheoryAPTi85ArbitragePricingTheoryAPTmakesfewassumptions.Oneprimaryassumptionisthateachinvestor,whengiventheopportunitytoincreasethereturnofhisorherportfoliowithoutincreasingitsrisk,willproceedtodoso.Thereexistsanarbitrageopportunityandtheinvestorcanuseanarbitrageportfolios.ArbitragePricingTheoryAPTma86ArbitrageOpportunitiesArbitrageistheearningofrisklessprofitbytakingadvantageofdifferentialpricingforthesamephysicalassetorsecurity.Ittypicallyentailsthesaleofasecurityatarelativelyhighpriceandthesimultaneouspurchaseofthesamesecurity(oritsfunctionalequivalent)atarelativelylowprice.ArbitrageOpportunitiesArbitra87ArbitrageOpportunitiesArbitrageactivityisacriticalelementofmodern,efficientsecuritymarkets.Ittakesrelativelyfewofthisactiveinvestorstoexploitarbitragesituationsand,bytheirbuyingandsellingactions,eliminatetheseprofitopportunities.SomeinvestorshavegreaterresourcesandinclinationtoengageIarbitragethanothers.ArbitrageOpportunitiesArbitra88ArbitrageOpportunitiesZero-investmentportfolioAportfolioofzeronetvalue,establishedbybuyingandshortingcomponentsecurities.Arisklessarbitrageopportunityariseswhenaninvestorcanconstructazero-investmentportfoliothatwillyieldasureprofit.ArbitrageOpportunitiesZero-in89ArbitrageOpportunitiesToconstructazero-investmentportfolio,onehastobeabletosellshortatleastoneassetandusetheproceedstopurchaseonormoreassets.Evenasmallinvestor,usingborrowedmoneyinthiscase,cantakealargepositioninsuchaportfolio.Therearemanyarbitragetactics.ArbitrageOpportunitiesTocons90ArbitrageOpportunitiesAnexample:Fourstocksandfourpossiblescenariostherateofreturninfourscenarios181inthetextbookTheexpectedreturns,standarddeviationsandcorrelationsdonotrevealanyabnormalitytothenakedeye.ArbitrageOpportunitiesAnexam91ArbitrageOpportunitiesThecriticalprope
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)體工商戶飯店財(cái)務(wù)制度
- 應(yīng)收應(yīng)付款財(cái)務(wù)制度
- 體育公司財(cái)務(wù)制度范本
- 農(nóng)民合同工制度
- 公司食堂報(bào)銷制度
- 小學(xué)春節(jié)活動(dòng)策劃方案(3篇)
- 珠促銷活動(dòng)策劃方案(3篇)
- 樓盤工人施工方案(3篇)
- 景區(qū)門票實(shí)名制管理制度
- 罕見腫瘤耐藥機(jī)制及應(yīng)對策略
- 醫(yī)療綜合樓手術(shù)室、放射科、檢驗(yàn)科二次深化設(shè)計(jì)裝飾工程投標(biāo)方案投標(biāo)文件(技術(shù)方案)
- DBJ50-T-078-2016重慶市城市道路工程施工質(zhì)量驗(yàn)收規(guī)范
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末質(zhì)量檢測道德與法治試題 (含答案)
- 2025年中國船舶集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 辦公樓物業(yè)服務(wù)的品質(zhì)提升策略
- 養(yǎng)殖場土地租賃合同
- JBT 8200-2024 煤礦防爆特殊型電源裝置用鉛酸蓄電池(正式版)
- (正式版)SHT 3078-2024 立式圓筒形料倉工程設(shè)計(jì)規(guī)范
- 計(jì)算機(jī)就業(yè)能力展示
- 設(shè)備維修團(tuán)隊(duì)的協(xié)作與溝通
- 華為三支柱運(yùn)作之HRBP實(shí)踐分享概要課件
評(píng)論
0/150
提交評(píng)論