版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1YuanLuoXi’anJan.2013OptimumDistanceProfilesofLinearBlockCodesShanghaiJiaoTongUniversity1YuanLuoXi’anJan.2013OptiHammingDistanceCodewordwithLongLengthorShortLengthOnewayis:Hammingdistance,generalizedHammingDistance,…AnotherDirectionis:Hammingdistance,distanceprofile,…Background:OurresearchesonODPoflinearblockcode:Golay,RS,RM,cycliccodes,…HammingDistanceCodewordwith3
HammingDistance3
HammingDistance4Although,thelinearcodeswithlonglengtharemostoftenappliedinwirelesscommunication,thecodeswithshortlengthstillexistinindustry,forexample,somestoragesystems,theTFCIof3G(or4G)system,somedatawithshortlengthbutneedstrongprotection,etc.CodewordwithLongLengthorShortLength4Although,thelinearcodeswi5Forthecodeswithshortlength,thepreviousclassicboundscanhelpyoudirectly.Forthecodeswithlonglength,theasymptoticformsofthepreviousclassicboundsstillwork.Inthistopic,weconsidersomeproblemsinthefieldofHammingdistancewithshortcodewordlength.5Forthecodeswithshortleng6Hammingdistanceisgeneralizedforthedescriptionoftrelliscomplexityoflinearblockcodes(DavidForney)andforthedescriptionofsecurityproblems(VictorWei).Wealsogeneralizedtheconcepttoconsidertherelationshipbetweenacodeandasubcode:Onewayis:Hammingdistance,generalizedHammingDistance,…6Hammingdistanceisgeneraliz7Inthefollowing,weconsidertheHammingdistanceinavariationalsystem.Forexample,whentheencodinganddecodingdeviceswerealmostselected,butthetransmissionratedoesnotneedtobehighinaperiod(intheeveningnotsomuchusers),seenextslide,thenmoreredundanciescanbeborrowedtoimprovethedecodingability.Whatshouldwedotorealizethisidea?Andwhatistheprinciple?AnotherDirectionis:Hammingdistance,distanceprofile,…7Inthefollowing,weconsider8TheTFCIin3Gsystem8TheTFCIin3Gsystem9DetailsInlinearcodingtheory,whenthenumberofinputbitsincreasesordecreases,somebasiscodewordsofthegeneratormatrixwillbeincludedorexcluded,respectively.9DetailsInlinearcodingtheor10
Foragivenlinearblockcode,weconsider:※howtoselectageneratormatrixandthen※howtoincludeorexcludethebasiscodewordsofthegeneratoronebyone※whilekeepingtheminimumdistances(ofthegeneratedsubcodes)aslargeaspossible.10ForagivenlinearblockBigProblemIngeneralcase,thealgebraicstructuremaybelostinsubcodealthoughthepropertiesoftheoriginalcodearenice.Thenhowtodecode?11BigProblemIngeneralcase,th12OneexampleLetCbeabinary[7,4,3]HammingcodewithgeneratormatrixG1:12Oneexample13ItiseasytocheckthatifweexcludetherowsofG1fromthelasttothefirstonebyone,thentheminimumdistances(adistanceprofile)ofthegeneratedsubcodeswillbe:444(fromlefttoright)13Itiseasytocheckthatif14Andyoucannotdobetter,i.e.byselectingthegeneratormatrixordeletingtherowsonebyoneinanotherway,youcannotgetbetterdistanceprofileinadictionaryorder.14Andyoucannotdobetter,i15Note:wesaythatthesequence 3468isbetterthan(oranupperboundon)thesequence 3459 indictionaryorder.15Note:wesaythatthesequen16AnotherexampleLetCbethebinary[7,4,3]HammingcodewithgeneratormatrixG2:16Anotherexample17ItiseasytocheckthatifweincludetherowsofG2fromthefirsttothelastonebyone,thentheminimumdistances(adistanceprofile)ofthegeneratedsubcodeswillbe:3337(fromrighttoleft)17Itiseasytocheckthatif18Andyoucannotdobetter,i.e.byselectingthegeneratormatrixoraddingtherowsonebyoneinanotherway,youcannotgetbetterdistanceprofileinaninversedictionaryorder.Note:wesaythatthesequence 3689 isbetterthan(oranupperboundon)thesequence 3779 ininversedictionaryorder.18Andyoucannotdobetter,i19MathematicalDescription(2010IT)19MathematicalDescription(20202021Optimumdistanceprofiles21Optimumdistanceprofiles22TheOptimumDistanceProfilesoftheGolayCodesForthe[24,12,8]extendedbinaryGolaycode,wehave22TheOptimumDistanceProfile232324Forthe[23,12,7]binaryGolaycode,wehave24Forthe[23,12,7]binaryG252526Forthe[12,6,6]extendedternaryGolaycode,wehave26Forthe[12,6,6]extended27Forthe[11,6,5]ternaryGolaycode,wehave27Forthe[11,6,5]ternary28FortheresearchesonReedMullercodes,seeYanlingChen’spaper(2010IT).MaybeLDPC…inthefuture?28FortheresearchesonReedM29Todealwiththebigproblem,weconsidercycliccodeandcyclicsubcode.GOODNEWS:Forgenerallinearcode,thecorrespondingproblemisnoteasysincefewalgebraicstructuresareleftinitssubcodes.Butforcycliccodesandsubcodes,itlooksOK29Todealwiththebigproblem30GOODNEWS:Forgeneralfixedlinearcode,thelengthsofallthedistanceprofilesarethesameastherankofthecode.Forcyclicsubcodechain,thelengthsofthedistanceprofilesarealsothesame.30GOODNEWS:31GOODNEWS:Forgeneralfixedlinearcode,thedimensionprofilesarethesame,andanydiscussionisundertheconditionofthesamedimensionprofile.Itisunluckythat,thedimensionprofilesofthecyclicsubcodechainsarenotthesame,sowecannotdiscussthedistanceprofilesdirectly.Butbyclassifyingthesetofcyclicsubcodechains,wecandealwiththeproblem.31GOODNEWS:32MathematicsDescription32MathematicsDescription33ClassificationontheCyclicSubcodeChains33ClassificationontheCyclic341ThelengthofitscyclicsubcodechainsisandJ(ms)isthenumberoftheminimalpolynomialswithdegreemsinthefactorsofthegeneratorpolynomial.341Thelengthofitscyclic352Thenumberofitscyclicsubcodechainsis3Thenumberofthechainsineachclassis:352Thenumberofitscyclics364Thenumberoftheclassesis:5Forthespecialcasen=qm-1,wehavewhereistheMobiusfunction.364Thenumberoftheclasses37Example:Thenumberofitscyclicsubcodechainsis24Thelengthofitscyclicsubcodechainsis4Thenumberofthechainsineachclassis2Thenumberoftheclassesis1237Example:Thenumberofitscy3838393940FornewresultsabouttheODPofcycliccodes,pleaserefertoourmanuscriptonthepuncturedReedMullercodes.40FornewresultsabouttheOD謝謝謝謝42YuanLuoXi’anJan.2013OptimumDistanceProfilesofLinearBlockCodesShanghaiJiaoTongUniversity1YuanLuoXi’anJan.2013OptiHammingDistanceCodewordwithLongLengthorShortLengthOnewayis:Hammingdistance,generalizedHammingDistance,…AnotherDirectionis:Hammingdistance,distanceprofile,…Background:OurresearchesonODPoflinearblockcode:Golay,RS,RM,cycliccodes,…HammingDistanceCodewordwith44
HammingDistance3
HammingDistance45Although,thelinearcodeswithlonglengtharemostoftenappliedinwirelesscommunication,thecodeswithshortlengthstillexistinindustry,forexample,somestoragesystems,theTFCIof3G(or4G)system,somedatawithshortlengthbutneedstrongprotection,etc.CodewordwithLongLengthorShortLength4Although,thelinearcodeswi46Forthecodeswithshortlength,thepreviousclassicboundscanhelpyoudirectly.Forthecodeswithlonglength,theasymptoticformsofthepreviousclassicboundsstillwork.Inthistopic,weconsidersomeproblemsinthefieldofHammingdistancewithshortcodewordlength.5Forthecodeswithshortleng47Hammingdistanceisgeneralizedforthedescriptionoftrelliscomplexityoflinearblockcodes(DavidForney)andforthedescriptionofsecurityproblems(VictorWei).Wealsogeneralizedtheconcepttoconsidertherelationshipbetweenacodeandasubcode:Onewayis:Hammingdistance,generalizedHammingDistance,…6Hammingdistanceisgeneraliz48Inthefollowing,weconsidertheHammingdistanceinavariationalsystem.Forexample,whentheencodinganddecodingdeviceswerealmostselected,butthetransmissionratedoesnotneedtobehighinaperiod(intheeveningnotsomuchusers),seenextslide,thenmoreredundanciescanbeborrowedtoimprovethedecodingability.Whatshouldwedotorealizethisidea?Andwhatistheprinciple?AnotherDirectionis:Hammingdistance,distanceprofile,…7Inthefollowing,weconsider49TheTFCIin3Gsystem8TheTFCIin3Gsystem50DetailsInlinearcodingtheory,whenthenumberofinputbitsincreasesordecreases,somebasiscodewordsofthegeneratormatrixwillbeincludedorexcluded,respectively.9DetailsInlinearcodingtheor51
Foragivenlinearblockcode,weconsider:※howtoselectageneratormatrixandthen※howtoincludeorexcludethebasiscodewordsofthegeneratoronebyone※whilekeepingtheminimumdistances(ofthegeneratedsubcodes)aslargeaspossible.10ForagivenlinearblockBigProblemIngeneralcase,thealgebraicstructuremaybelostinsubcodealthoughthepropertiesoftheoriginalcodearenice.Thenhowtodecode?52BigProblemIngeneralcase,th53OneexampleLetCbeabinary[7,4,3]HammingcodewithgeneratormatrixG1:12Oneexample54ItiseasytocheckthatifweexcludetherowsofG1fromthelasttothefirstonebyone,thentheminimumdistances(adistanceprofile)ofthegeneratedsubcodeswillbe:444(fromlefttoright)13Itiseasytocheckthatif55Andyoucannotdobetter,i.e.byselectingthegeneratormatrixordeletingtherowsonebyoneinanotherway,youcannotgetbetterdistanceprofileinadictionaryorder.14Andyoucannotdobetter,i56Note:wesaythatthesequence 3468isbetterthan(oranupperboundon)thesequence 3459 indictionaryorder.15Note:wesaythatthesequen57AnotherexampleLetCbethebinary[7,4,3]HammingcodewithgeneratormatrixG2:16Anotherexample58ItiseasytocheckthatifweincludetherowsofG2fromthefirsttothelastonebyone,thentheminimumdistances(adistanceprofile)ofthegeneratedsubcodeswillbe:3337(fromrighttoleft)17Itiseasytocheckthatif59Andyoucannotdobetter,i.e.byselectingthegeneratormatrixoraddingtherowsonebyoneinanotherway,youcannotgetbetterdistanceprofileinaninversedictionaryorder.Note:wesaythatthesequence 3689 isbetterthan(oranupperboundon)thesequence 3779 ininversedictionaryorder.18Andyoucannotdobetter,i60MathematicalDescription(2010IT)19MathematicalDescription(20612062Optimumdistanceprofiles21Optimumdistanceprofiles63TheOptimumDistanceProfilesoftheGolayCodesForthe[24,12,8]extendedbinaryGolaycode,wehave22TheOptimumDistanceProfile642365Forthe[23,12,7]binaryGolaycode,wehave24Forthe[23,12,7]binaryG662567Forthe[12,6,6]extendedternaryGolaycode,wehave26Forthe[12,6,6]extended68Forthe[11,6,5]ternaryGolaycode,wehave27Forthe[11,6,5]ternary69FortheresearchesonReedMullercodes,seeYanlingChen’spaper(2010IT).MaybeLDPC…inthefuture?28FortheresearchesonReedM70Todealwiththebigproblem,weconsidercycliccodeandcyclicsubcode.GOODNEWS:Forgenerallinearcode,thecorrespondingproblemisnoteasysincefewalgebraicstructuresareleftinitssubcodes.Butforcycliccodesandsubcodes,itlooksOK29Todealwiththebigproblem71GOODNEWS:Forgeneralfixedlinearcode,thelengthsofallthedistanceprofilesarethesameastherankofthecode.Forcyclicsubcodechain,thelengthsofthedistanceprofilesarealsothesame.30GOODNEWS:72GOODNEWS:Forgeneralfixedlin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026北京中央民族大學非事業(yè)編制合同制職工招聘2人備考題庫(第一批)有答案詳解
- 情人節(jié)禮物抒情作文(14篇)
- 展示活動守秘保證承諾書5篇
- 跨行業(yè)采購成本控制策略模板
- XX初中七年級下學期音樂美術學科展示活動方案
- XX初中2025年秋季學期期中考試質量分析報告會
- 戶外工廠施工方案(3篇)
- 拍照方案策劃活動流程(3篇)
- 斜拉橋投標施工方案(3篇)
- 施工方案氣象概況(3篇)
- 二十屆四中全會測試題及參考答案
- 公司電腦使用規(guī)范制度
- 2026重慶水利電力職業(yè)技術學院高層次人才招聘筆試參考題庫及答案解析
- 特種作業(yè)培訓課件模板
- 陶瓷工藝品彩繪師崗后測試考核試卷含答案
- 廣西壯族自治區(qū)工業(yè)和信息化廳直屬部分科研事業(yè)單位2025年度公開招聘工作人員備考題庫參考答案詳解
- 2026年及未來5年市場數據中國超細銅粉行業(yè)發(fā)展趨勢及投資前景預測報告
- (新教材)2026年人教版八年級下冊數學 21.2.2 平行四邊形的判定 21.2.3 三角形的中位線 課件
- 吞咽障礙患者誤吸的預防與管理方案
- 繼承農村房屋協議書
- (新教材)2025年人教版八年級上冊歷史期末復習全冊知識點梳理
評論
0/150
提交評論