2023屆江西省撫州市臨川畢業(yè)升學考試模擬卷數(shù)學卷含答案解析_第1頁
2023屆江西省撫州市臨川畢業(yè)升學考試模擬卷數(shù)學卷含答案解析_第2頁
2023屆江西省撫州市臨川畢業(yè)升學考試模擬卷數(shù)學卷含答案解析_第3頁
2023屆江西省撫州市臨川畢業(yè)升學考試模擬卷數(shù)學卷含答案解析_第4頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023屆江西省撫州市臨川畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.有一個數(shù)用科學記數(shù)法表示為5.2×105,則這個數(shù)是()A.520000 B. C.52000 D.52000002.剪紙是水族的非物質(zhì)文化遺產(chǎn)之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.3.如圖所示的幾何體,它的左視圖是()A. B. C. D.4.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.5.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個6.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數(shù)圖象大致形狀是()A. B. C. D.7.下列實數(shù)中,在2和3之間的是()A. B. C. D.8.石墨烯是現(xiàn)在世界上最薄的納米材料,其理論厚度僅是0.00000000034m,這個數(shù)用科學記數(shù)法表示正確的是(

)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m9.如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現(xiàn)在有如下4個結論:①≌;②;③∠GDE=45°;④DG=DE在以上4個結論中,正確的共有()個A.1個 B.2個 C.3個 D.4個10.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若有意義,則x的取值范圍是.12.在平面直角坐標系xOy中,位于第一象限內(nèi)的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.13.函數(shù)y=中自變量x的取值范圍是___________.14.如圖,AC是正五邊形ABCDE的一條對角線,則∠ACB=_____.15.如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點E,連接BE,將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為_____.16.如圖,點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,OA=4,則k的值為_____.三、解答題(共8題,共72分)17.(8分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.18.(8分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.19.(8分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.20.(8分)先化簡,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根21.(8分)如圖,已知是直角坐標平面上三點.將先向右平移3個單位,再向上平移3個單位,畫出平移后的圖形;以點為位似中心,位似比為2,將放大,在軸右側畫出放大后的圖形;填空:面積為.22.(10分)解方程:=1.23.(12分)如圖所示,在長和寬分別是a、b的矩形紙片的四個角都剪去一個邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.24.為了支持大學生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數(shù)關系如圖所示.求該網(wǎng)店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達式;小王自網(wǎng)店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、A【答案解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】5.2×105=520000,故選A.【答案點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、D【答案解析】

根據(jù)把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【題目詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【答案點睛】此題主要考查了中心對稱圖形,關鍵是掌握中心對稱圖形的定義.3、D【答案解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.4、D【答案解析】先將25100用科學記數(shù)法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D5、C【答案解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【答案點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內(nèi),如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.6、C【答案解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學生從圖象中讀取信息的數(shù)形結合能力,體現(xiàn)了分類討論的思想.7、C【答案解析】

分析:先求出每個數(shù)的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;

B、1<π?2<2,故本選項不符合題意;

C、2<<3,故本選項符合題意;

D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數(shù)的大小,能估算出每個數(shù)的范圍是解本題的關鍵.8、C【答案解析】測試卷分析:根據(jù)科學記數(shù)法的概念可知:用科學記數(shù)法可將一個數(shù)表示的形式,所以將1.11111111134用科學記數(shù)法表示,故選C.考點:科學記數(shù)法9、C【答案解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.【題目詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;∴正確說法是①②③故選:C【答案點睛】本題綜合性較強,考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,有一定的難度.10、B【答案解析】測試卷分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大小.考點:三視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≥8【答案解析】略12、.【答案解析】

依據(jù)點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【題目詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【答案點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規(guī)律.13、x≥﹣且x≠1【答案解析】

測試卷解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.14、36°【答案解析】

由正五邊形的性質(zhì)得出∠B=108°,AB=CB,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可得出結果.【題目詳解】∵五邊形ABCDE是正五邊形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案為36°.15、【答案解析】

設CE=x,由矩形的性質(zhì)得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質(zhì)得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的長度,進而求出DF的長度;然后在Rt△DEF根據(jù)勾股定理列出關于x的方程即可解決問題.【題目詳解】設CE=x.∵四邊形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案為.16、﹣4.【答案解析】

作AN⊥x軸于N,可設A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【題目詳解】解:作AN⊥x軸于N,如圖所示:∵點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,∴可設A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案為﹣4.【答案點睛】本題考查了反比例函數(shù)與一次函數(shù)的圖象得交點、勾股定理、反比例函數(shù)解析式的求法;求出點A的坐標是解決問題的關鍵.三、解答題(共8題,共72分)17、(1)35,50;(2)①12;②y=﹣x+;③150米.【答案解析】

(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據(jù):甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關系可得y與x之間的函數(shù)關系式;③根據(jù):甲隊先修x米的費用+甲、乙兩隊每天費用×合作時間≤22800,列不等式求解可得.【題目詳解】解:(1)甲隊單獨完成這項工程所需天數(shù)n=1050÷30=35(天),則乙單獨完成所需天數(shù)為21天,∴乙隊每天修路的長度m=1050÷21=50(米),故答案為35,50;(2)①乙隊修路的天數(shù)為=12(天);②由題意,得:x+(30+50)y=1050,∴y與x之間的函數(shù)關系式為:y=﹣x+;③由題意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若總費用不超過22800元,甲隊至少先修了150米.【答案點睛】本題考查了一次函數(shù)的應用,解題的關鍵是熟練的掌握一次函數(shù)的應用.18、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【答案解析】

(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【題目詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【答案點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行合理變形,解決相似三角形問題時要注意分類討論.19、(1)25π;(2)CD1=,CD2=7【答案解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質(zhì)等知識.利用分類討論思想并合理構造輔助線是解題的關鍵.20、2m2+2m+5;1;【答案解析】

先利用完全平方公式化簡,再去括號合并得到最簡結果,把已知等式變形后代入值計算即可.【題目詳解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【答案點睛】此題考查了整式的化簡求值以及方程的解,利用整體代換思想可使運算更簡單.21、(1)詳見解析;(2)詳見解析;(3).【答案解析】

(1)分別畫出A、B、C三點的對應點即可解決問題;(2)由(1)得各頂點的坐標,然后利用位似圖形的性質(zhì),即可求得各點的坐標,然后在圖中作出位似三角形即可.(3)求得所在矩形的面積減去三個三角形的面積即可.【題目詳解】(1)如圖,即為所求作;(2)如圖,即為所求作;(3)面積=4×4-×2×4-×2×2-×2×4=6.【答案點睛】本題主要考查了利用平移變換作圖、位似作圖以及求三角形的面積,作圖時要先找到圖形的關鍵點,把這幾個關鍵點按平移的方向和距離確定對應點后,再順序連接對應點即可得到平移后的圖形.22、x=1【答案解析】

方程兩邊同乘轉化為整式方程,解整式方程后進行檢驗即可得.【題目詳解】解:方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論