2022年河南省鶴壁市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022年河南省鶴壁市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022年河南省鶴壁市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022年河南省鶴壁市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022年河南省鶴壁市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年河南省鶴壁市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0

B.f(x0)必定存在,但f(x0)不-定等于零

C.f(x0)不存在或f(x0)=0

D.f(x0)必定不存在

3.A.A.2B.1C.0D.-1

4.

5.

6.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

7.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無(wú)窮小量f(x)與g(x),有

A.f(x)對(duì)于g(x)是高階的無(wú)窮小量

B.f(x)對(duì)于g(x)是低階的無(wú)窮小量

C.f(x)與g(x)為同階無(wú)窮小量,但非等價(jià)無(wú)窮小量

D.f(x)與g(x)為等價(jià)無(wú)窮小量

8.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1

9.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無(wú)水平漸近線,又無(wú)鉛直漸近線

10.A.A.0B.1/2C.1D.2

11.A.

B.0

C.

D.

12.

13.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.

B.

C.

D.

14.A.A.3B.1C.1/3D.015.下列等式中正確的是()。A.

B.

C.

D.

16.

17.

18.

19.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x

B.x3

C.(1/3)x3+C

D.3x3+C

20.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

二、填空題(20題)21.

22.求微分方程y"-y'-2y=0的通解。

23.

24.

25.

26.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。

27.設(shè)z=x2+y2-xy,則dz=__________。

28.

29.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。

30.設(shè)f(x+1)=3x2+2x+1,則f(x)=_________.

31.

32.=______.

33.函數(shù)x=ln(1+x2-y2)的全微分dz=_________.

34.

35.36.設(shè)y=sin2x,則dy=______.

37.

38.

39.過(guò)坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_________.

40.三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.43.求曲線在點(diǎn)(1,3)處的切線方程.44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

45.46.47.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

48.

49.求微分方程的通解.50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).52.

53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

54.

55.56.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.58.證明:59.將f(x)=e-2X展開為x的冪級(jí)數(shù).

60.

四、解答題(10題)61.將f(x)=1/3-x展開為(x+2)的冪級(jí)數(shù),并指出其收斂區(qū)間。

62.將f(x)=e-2x展開為x的冪級(jí)數(shù),并指出其收斂區(qū)間。

63.

64.

65.

66.

67.

68.

69.

70.計(jì)算五、高等數(shù)學(xué)(0題)71.曲線y=lnx在點(diǎn)_________處的切線平行于直線y=2x一3。

六、解答題(0題)72.求

參考答案

1.B

2.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).

若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:

(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).

(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.

從題目的選項(xiàng)可知應(yīng)選C.

本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.

3.C

4.A

5.A

6.C

本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

7.C

8.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.

9.A

10.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

11.A

12.A

13.B

14.A

15.B

16.B

17.A

18.B

19.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。

20.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

21.-1

22.

23.-3sin3x-3sin3x解析:

24.

25.26.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。

27.(2x-y)dx+(2y-x)dy28.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得

29.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

30.

31.32.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此

33.

34.35.(-∞,+∞).

本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.

若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).

若ρ=+∞,則收斂半徑R=0,級(jí)數(shù)僅在點(diǎn)x=0收斂.

36.2cos2xdx這類問(wèn)題通常有兩種解法.

解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,

因此dy=2cos2xdx.

解法2利用微分運(yùn)算公式

dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.

37.

解析:

38.

39.3x-7y+5z=0本題考查了平面方程的知識(shí)點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.

40.

41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

42.

43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.

45.

46.47.由等價(jià)無(wú)窮小量的定義可知

48.

49.50.函數(shù)的定義域?yàn)?/p>

注意

51.

列表:

說(shuō)明

52.由一階線性微分方程通解公式有

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

54.

55.

56.

57.由二重積分物理意義知

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.本題考查的知識(shí)點(diǎn)為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論