版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年浙江省嘉興市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.4B.-4C.2D.-2
2.
3.下列關(guān)系式中正確的有()。A.
B.
C.
D.
4.
5.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
6.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
7.A.A.1
B.
C.
D.1n2
8.
9.
10.
11.A.A.-(1/2)B.1/2C.-1D.212.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
13.
14.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
15.輥軸支座(又稱(chēng)滾動(dòng)支座)屬于()。
A.柔索約束B(niǎo).光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束16.
17.
18.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)
19.
20.
A.1
B.2
C.x2+y2
D.TL
二、填空題(20題)21.設(shè)z=x2y2+3x,則
22.
23.
24.
25.
26.
27.
28.二元函數(shù)z=x2+y2+1的極小值為_(kāi)______.
29.
30.
31.
32.
33.
34.
35.36.37.
38.
39.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.
40.三、計(jì)算題(20題)41.
42.
43.
44.求曲線在點(diǎn)(1,3)處的切線方程.45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.46.47.求微分方程的通解.48.49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).52.53.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.60.證明:四、解答題(10題)61.
62.
63.64.65.求由曲線xy=1及直線y=x,y=2所圍圖形的面積A。
66.
67.求通過(guò)點(diǎn)(1,2)的曲線方程,使此曲線在[1,x]上形成的曲邊梯形面積的值等于此曲線弧終點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y乘積的2倍減去4。
68.69.
70.
五、高等數(shù)學(xué)(0題)71.
,則
=__________。
六、解答題(0題)72.設(shè)區(qū)域D由x2+y2≤1,x≥0,y≥0所圍成.求
參考答案
1.D
2.C
3.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此
可知應(yīng)選B。
4.B
5.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
6.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
7.C本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選C.
8.B
9.A
10.A
11.A
12.A由于
可知應(yīng)選A.
13.C
14.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
因此選B.
15.C
16.B
17.B
18.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.
由于相應(yīng)齊次方程為y"+3y'0,
其特征方程為r2+3r=0,
特征根為r1=0,r2=-3,
自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)
故應(yīng)選D.
19.C
20.A
21.2xy(x+y)+3本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
由于z=x2y2+3x,可知
22.
23.24.
本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫(xiě)出特征方程,求出特征根,再寫(xiě)出方程的通解.
25.
解析:
26.
27.28.1;本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
29.
30.2
31.(-33)
32.
33.
解析:
34.
35.1本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
36.解析:
37.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
38.2
39.
40.
41.
則
42.
43.44.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
45.
46.
47.
48.49.函數(shù)的定義域?yàn)?/p>
注意
50.由一階線性微分方程通解公式有
51.
列表:
說(shuō)明
52.
53.54.由等價(jià)無(wú)窮小量的定義可知
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
56.
57.
58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
59.由二重積分物理意義知
60.
61.
62.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 疫情答題活動(dòng)策劃方案(3篇)
- 體育股內(nèi)部管理制度(3篇)
- 2026福建海峽人力資源股份有限公司漳州分公司招聘1人參考考試題庫(kù)及答案解析
- 2026北京積水潭醫(yī)院聊城醫(yī)院博士研究生引進(jìn)22人考試參考題庫(kù)及答案解析
- 2026廣西柳州市柳北區(qū)雅儒街道辦事處招聘公益性崗位人員1人筆試模擬試題及答案解析
- 2026年河北大學(xué)附屬醫(yī)院公開(kāi)選聘工作人員備考考試題庫(kù)及答案解析
- 電磁感應(yīng)補(bǔ)充題目
- 2026浙江浙建好房子裝飾科技有限公司招聘參考考試題庫(kù)及答案解析
- 2026西藏昌都市八宿縣發(fā)展改革和經(jīng)信商務(wù)局招聘專(zhuān)業(yè)技術(shù)人員1人考試備考題庫(kù)及答案解析
- 九江市公安局柴桑分局2026年度公開(kāi)招聘警務(wù)輔助人員備考考試題庫(kù)及答案解析
- 學(xué)霸寒假語(yǔ)文閱讀集訓(xùn)五年級(jí)答案
- 2025年復(fù)旦三位一體浙江筆試及答案
- 財(cái)務(wù)先進(jìn)個(gè)人代表演講稿
- 年度得到 · 沈祖蕓全球教育報(bào)告(2024-2025)
- DB23T 2689-2020養(yǎng)老機(jī)構(gòu)院內(nèi)感染預(yù)防控制規(guī)范
- 2025屆天津市和平區(qū)名校高三最后一模語(yǔ)文試題含解析
- 專(zhuān)業(yè)律師服務(wù)合同書(shū)樣本
- 建筑施工現(xiàn)場(chǎng)污水處理措施方案
- 學(xué)生計(jì)算錯(cuò)誤原因分析及對(duì)策
- 送貨單格式模板
- 防止激情違紀(jì)和犯罪授課講義
評(píng)論
0/150
提交評(píng)論