版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學一自考模擬考試(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
2.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
3.
4.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
5.
6.“目標的可接受性”可以用()來解釋。
A.公平理論B.雙因素理論C.期望理論D.強化理論
7.設(shè)Y=e-3x,則dy等于().
A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
8.
9.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]
B.[-1,1]
C.[1,+∞)
D.(-∞,+∞)
10.曲線y=lnx-2在點(e,-1)的切線方程為()A.A.
B.
C.
D.
11.
12.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
13.
14.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
15.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
16.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點
B.xo為f(x)的極小值點
C.xo不為f(x)的極值點
D.xo可能不為f(x)的極值點
17.()。A.
B.
C.
D.
18.
A.2x-2B.2y+4C.2x+2y+2D.2y+4+x2-2x
19.設(shè)y=f(x)在(a,b)內(nèi)有二階導數(shù),且f"<0,則曲線y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
20.
二、填空題(20題)21.______。
22.
23.
24.
25.
26.
27.設(shè)f(x)=e5x,則f(x)的n階導數(shù)f(n)(x)=__________.
28.
29.
30.
31.設(shè)y=f(x)在點x0處可導,且在點x0處取得極小值,則曲線y=f(x)在點(x0,f(x0))處的切線方程為________。
32.
33.設(shè),則y'=________。
34.
35.設(shè)函數(shù)y=x2+sinx,則dy______.
36.
37.已知平面π:2x+y-3z+2=0,則過點(0,0,0)且與π垂直的直線方程為______.
38.設(shè)x=f(x,y)在點p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點,則______.
39.
40.
三、計算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
42.
43.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
44.將f(x)=e-2X展開為x的冪級數(shù).
45.
46.
47.證明:
48.
49.求曲線在點(1,3)處的切線方程.
50.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
51.求微分方程的通解.
52.
53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
54.
55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
56.求微分方程y"-4y'+4y=e-2x的通解.
57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
58.
59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
60.當x一0時f(x)與sin2x是等價無窮小量,則
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(0題)71.求
的極值。
六、解答題(0題)72.求y=xlnx的極值與極值點.
參考答案
1.B
2.C本題考查的知識點為羅爾定理的條件與結(jié)論。
3.A
4.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
5.B解析:
6.C解析:目標的可接受性可用期望理論來理解。
7.C
8.D解析:
9.B
10.D
11.D解析:
12.C本題考查了萊布尼茨公式的知識點.
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
13.D解析:
14.A
15.A
16.A
17.A
18.B解析:
19.A本題考查的知識點為利用二階導數(shù)符號判定曲線的凹凸性.
由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹的,因此選A.
20.B
21.本題考查的知識點為極限運算。
所求極限的表達式為分式,其分母的極限不為零。
因此
22.
23.
24.22解析:
25.
26.
27.
28.0
29.F(sinx)+C本題考查的知識點為不定積分的換元法.
由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,
30.0.
本題考查的知識點為定積分的性質(zhì).
積分區(qū)間為對稱區(qū)間,被積函數(shù)為奇函數(shù),因此
31.y=f(x0)y=f(x)在點x0處可導,且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。
32.2m2m解析:
33.
34.
35.(2x+cosx)dx;本題考查的知識點為微分運算.
解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,
可知dy=(2x+cosx)dx.
解法2利用微分運算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.
36.e-6
37.
本題考查的知識點為直線的方程和平面與直線的關(guān)系.
由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(0,0,0),由直線的標準式方程可知
為所求.
38.0本題考查的知識點為二元函數(shù)極值的必要條件.
由于z=f(x,y)在點P0(x0,y0)可微分,P(x0,y0)為z的極值點,由極值的必要條件可知
39.2/52/5解析:
40.
本題考查的知識點為導數(shù)的四則運算.
41.
42.
43.
44.
45.
46.
47.
48.
49.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.
51.
52.
則
53.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
54.
55.由二重積分物理意義知
56.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
57.函數(shù)的定義域為
注意
58.由一階線性微分方程通解公式有
59.
列表:
說明
60.由等價無窮小量的定義可知
61.
62.
63.
64.65.本題考查的知識點為定積分的換元積分法.
66.
67.
68.
69.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學26.2《圓的對稱性》(滬科版九年級下)
- 2026年劇本殺運營公司員工宿舍管理制度
- 2026年劇本殺運營公司行業(yè)監(jiān)管對接管理制度
- 2026年劇本殺運營公司劇本與道具匹配管理制度
- 2025 小學四年級思想品德上冊公共場合禮儀訓練課件
- 2026及未來5年中國郵票行業(yè)市場現(xiàn)狀調(diào)查及投資前景研判報告
- 2026年及未來5年中國數(shù)碼攝像機行業(yè)市場運營現(xiàn)狀及投資規(guī)劃研究建議報告
- 2025年數(shù)字孿生技術(shù)在城市規(guī)劃中的創(chuàng)新報告
- 光伏發(fā)電安全制度
- 保衛(wèi)安全制度
- 應(yīng)急預案批復意見
- 錦州市高三語文試卷及答案
- 化學品供應(yīng)商審核細則
- 冬季環(huán)衛(wèi)車輛安全培訓課件
- 高速防滑防凍安全知識培訓課件
- 電氣線路安全知識培訓課件
- 瑞馬唑侖病例分享
- T-CSER-015-2023 場地環(huán)境信息地球物理探測技術(shù)指南
- 2025至2030中國背板連接器行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- T/CCMA 0173-2023流動式起重機用高性能平衡閥
- GB/T 18910.103-2025液晶顯示器件第10-3部分:環(huán)境、耐久性和機械試驗方法玻璃強度和可靠性
評論
0/150
提交評論