高二數(shù)學(xué)選修22教案文案_第1頁(yè)
高二數(shù)學(xué)選修22教案文案_第2頁(yè)
高二數(shù)學(xué)選修22教案文案_第3頁(yè)
高二數(shù)學(xué)選修22教案文案_第4頁(yè)
高二數(shù)學(xué)選修22教案文案_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

WORD(可編輯版本)———高二數(shù)學(xué)選修22教案文案教學(xué)以人的發(fā)展為中心,知識(shí)的傳遞只是手段,而不是目的。教學(xué)的目的在于促進(jìn)人的發(fā)展。與此相適應(yīng),一生只備一個(gè)教案的備課已經(jīng)完全不適應(yīng)現(xiàn)代教學(xué)的需要了。今天我在這里整理了一些高二數(shù)學(xué)選修22教案最新文案,我們一起來(lái)看看吧!

高二數(shù)學(xué)選修22教案最新文案1

一、教材分析

【教材地位及作用】

基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社平凡高中課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和精通了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。

【教學(xué)目標(biāo)】

依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際狀況,特確定如下目標(biāo):

知識(shí)與技能目標(biāo):理解精通基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;

過(guò)程與方法目標(biāo):通過(guò)探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過(guò)程,培養(yǎng)分析、解決問(wèn)題的能力;

情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

【教學(xué)重難點(diǎn)】

重點(diǎn):理解精通基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義。

難點(diǎn):利用基本不等式推導(dǎo)不等式.

關(guān)鍵是對(duì)基本不等式的理解精通.

二、教法分析

本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。利用多媒體幫助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率.

三、學(xué)法指導(dǎo)

新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過(guò)讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。

四、教學(xué)過(guò)程

教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

具體過(guò)程安排如下:

(一)基本不等式的教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問(wèn)題

設(shè)計(jì)意圖:數(shù)學(xué)教育務(wù)必基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是援助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。

問(wèn)題1請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組談?wù)?

(二)探究問(wèn)題,抽象歸納

基本不等式的教學(xué)設(shè)計(jì)1.探究圖形中的不等關(guān)系

形的角度(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積.)

數(shù)的角度

問(wèn)題2若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?

學(xué)生談?wù)摻Y(jié)果:。

問(wèn)題3大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒(méi)有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)

咱們?cè)倏匆豢磮D形的變化,(教師演示)

(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。

設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

2.抽象歸納:

一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

問(wèn)題4你能給出它的證明嗎?

學(xué)生在黑板上板書(shū)。

問(wèn)題5特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?

學(xué)生歸納得出。

設(shè)計(jì)意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).

【歸納總結(jié)】

如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。

3.探究基本不等式證明方法:

問(wèn)題6如何證明基本不等式?

設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。

方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開(kāi)證明。

方法二:分析法

要證

只要證2

要證,只要證2

要證,只要證

明顯,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。

4.理解升華

1)文字語(yǔ)言敘述:

兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

2)符號(hào)語(yǔ)言敘述:

若,則有,當(dāng)且僅當(dāng)a=b時(shí),。

問(wèn)題7怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組談?wù)?,交流看法,師生總結(jié))

“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:

當(dāng)a=b時(shí),取等號(hào),即;

僅當(dāng)a=b時(shí),取等號(hào),即。

3)探究基本不等式的幾何意義:

基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過(guò)數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。

如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),

CD⊥AB,AC=a,CB=b,

問(wèn)題8你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?

(教師演示,學(xué)生直觀感覺(jué))

易證RtACDRtDCB,那么CD2=CA·CB

即CD=.

這個(gè)圓的半徑為,明顯,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立.

因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.

4)聯(lián)想數(shù)列的知識(shí)理解基本不等式

從形的角度來(lái)看,基本不等式具有特定的幾何意義;從數(shù)的角度來(lái)看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.

問(wèn)題9回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過(guò)“和”與“積”的結(jié)構(gòu)?

歸納得出:

均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng).

基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用

例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)

(2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,

,過(guò)作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?

設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。

(五)演練反饋,鞏固深化

公式應(yīng)用之一:

1.試判斷與與2的大小關(guān)系?

問(wèn)題:如果將條件“x0”去掉,上述結(jié)論是否依舊成立?

2.試判斷與7的大小關(guān)系?

公式應(yīng)用之二:

設(shè)計(jì)意圖:新奇有趣、簡(jiǎn)易易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中

(1)用一個(gè)兩臂長(zhǎng)短有差異的天平稱一樣物品,有人說(shuō)只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺(jué)得這種做法比實(shí)際重量輕了還是重了?

(2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類產(chǎn)品進(jìn)行促銷.甲商場(chǎng)采取的促銷方式是在原價(jià)p折的基礎(chǔ)上再打q折;乙商場(chǎng)的促銷方式則是兩次都打折.對(duì)顧客而言,哪種打折方式更合算?(0

≠q)

(五)反思總結(jié),整合新知:

通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要請(qǐng)教?

設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;援助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生精通本節(jié)課的重點(diǎn),突破難點(diǎn)

老師根據(jù)狀況完善如下:

知識(shí)要點(diǎn):

(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征

(2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義

思想方法技巧:

(1)數(shù)形結(jié)合思想、“整體與局部”

(2)歸納與類比思想

(3)換元法、比較法、分析法

(七)布置作業(yè),更上一層

1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)

2.書(shū)面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)

3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?

設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

五、評(píng)價(jià)分析

1.在建立新知的過(guò)程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來(lái)分析問(wèn)題、解決問(wèn)題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問(wèn)題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體狀況,力爭(zhēng)提問(wèn)準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問(wèn)持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和精通在不斷的思考和談?wù)撝型晟坪图由睢?/p>

2.本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過(guò)程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解?!皵?shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠精通并且會(huì)用的,只有學(xué)生通過(guò)實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問(wèn)題時(shí)去嘗試使用,只有通過(guò)不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到精通它的目的。

六、板書(shū)設(shè)計(jì)

§3.3基本不等式

一、重要不等式

二、基本不等式

1.文字語(yǔ)言敘述

2.符號(hào)語(yǔ)言敘述

3.幾何意義

4.代數(shù)解釋

三、應(yīng)用舉例

例1.

四、演練反饋

五、總結(jié)歸納

1.知識(shí)要點(diǎn)

2.思想方法

高二數(shù)學(xué)選修22教案最新文案2

預(yù)習(xí)課本P103~105,思考并完成以下問(wèn)題

(1)怎樣定義向量的數(shù)量積?向量的數(shù)量積與向量數(shù)乘相同嗎?

(2)向量b在a方向上的投影怎么計(jì)算?數(shù)量積的幾何意義是什么?

(3)向量數(shù)量積的性質(zhì)有哪些?

(4)向量數(shù)量積的運(yùn)算律有哪些?

新知初探

1.向量的數(shù)量積的定義

(1)兩個(gè)非零向量的數(shù)量積:

已知條件向量a,b是非零向量,它們的夾角為θ

定義a與b的數(shù)量積(或內(nèi)積)是數(shù)量|a||b|cosθ

記法a·b=|a||b|cosθ

(2)零向量與任一向量的數(shù)量積:

規(guī)定:零向量與任一向量的數(shù)量積均為0.

點(diǎn)睛(1)兩向量的數(shù)量積,其結(jié)果是數(shù)量,而不是向量,它的值等于兩向量的模與兩向量夾角余弦值的乘積,其符號(hào)由夾角的余弦值來(lái)決定.

(2)兩個(gè)向量的數(shù)量積記作a·b,千萬(wàn)不能寫(xiě)成a×b的形式.

2.向量的數(shù)量積的幾何意義

(1)投影的概念:

①向量b在a的方向上的投影為|b|cosθ.

②向量a在b的方向上的投影為|a|cosθ.

(2)數(shù)量積的幾何意義:

數(shù)量積a·b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積.

點(diǎn)睛(1)b在a方向上的投影為|b|cosθ(θ是a與b的夾角),也可以寫(xiě)成a·b|a|.

(2)投影是一個(gè)數(shù)量,不是向量,其值可為正,可為負(fù),也可為零.

3.向量數(shù)量積的性質(zhì)

設(shè)a與b都是非零向量,θ為a與b的夾角.

(1)a⊥b?a·b=0.

(2)當(dāng)a與b同向時(shí),a·b=|a||b|,

當(dāng)a與b反向時(shí),a·b=-|a||b|.

(3)a·a=|a|2或|a|=a·a=a2.

(4)cosθ=a·b|a||b|.

(5)|a·b|≤|a||b|.

點(diǎn)睛對(duì)于性質(zhì)(1),可以用來(lái)解決有關(guān)垂直的問(wèn)題,即若要證明某兩個(gè)向量垂直,只需判定它們的數(shù)量積為0;若兩個(gè)非零向量的數(shù)量積為0,則它們相互垂直.

4.向量數(shù)量積的運(yùn)算律

(1)a·b=b·a(交換律).

(2)(λa)·b=λ(a·b)=a·(λb)(結(jié)合律).

(3)(a+b)·c=a·c+b·c(分配律).

點(diǎn)睛(1)向量的數(shù)量積不滿足消去律:若a,b,c均為非零向量,且a·c=b·c,但得不到a=b.

(2)(a·b)·c≠a·(b·c),因?yàn)閍·b,b·c是數(shù)量積,是實(shí)數(shù),不是向量,所以(a·b)·c與向量c共線,a·(b·c)與向量a共線,因此,(a·b)·c=a·(b·c)在一般狀況下不成立.

小試身手

1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的打“×”)

(1)兩個(gè)向量的數(shù)量積依舊是向量.()

(2)若a·b=b·c,則一定有a=c.()

(3)若a,b反向,則a·b=-|a||b|.()

(4)若a·b=0,則a⊥b.()

答案:(1)×(2)×(3)√(4)×

2.若|a|=2,|b|=12,a與b的夾角為60°,則a·b=()

A.2B.12

C.1D.14

答案:B

3.已知|a|=10,|b|=12,且(3a)·15b=-36,則a與b的夾角為()

A.60°B.120°

C.135°D.150°

答案:B

4.已知a,b的夾角為θ,|a|=2,|b|=3.

(1)若θ=135°,則a·b=________;

(2)若a∥b,則a·b=________;

(3)若a⊥b,則a·b=________.

答案:(1)-32(2)6或-6(3)0

向量數(shù)量積的運(yùn)算

典例(1)已知向量a與b的夾角為120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·

(a-2b).

(2)如圖,正三角形ABC的邊長(zhǎng)為2,=c,=a,=b,求a·b+b·c+c·a.

解(1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.

②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.

(2)∵|a|=|b|=|c|=2,且a與b,b與c,c與a的夾角均為120°,

∴a·b+b·c+c·a=2×2×cos120°×3=-3.

向量數(shù)量積的求法

(1)求兩個(gè)向量的數(shù)量積,首先確定兩個(gè)向量的模及向量的夾角,其中準(zhǔn)確求出兩向量的夾角是求數(shù)量積的關(guān)鍵.

(2)根據(jù)數(shù)量積的運(yùn)算律,向量的加、減與數(shù)量積的混合運(yùn)算類似于多項(xiàng)式的乘法

運(yùn)算.

活學(xué)活用

已知|a|=3,|b|=4,a與b的夾角為120°,求:

(1)a·b;(2)a2-b2;

(3)(2a-b)·(a+3b).

解:(1)a·b=|a||b|cos120°=3×4×-12=-6.

(2)a2-b2=|a|2-|b|2=32-42=-7.

(3)(2a-b)·(a+3b)=2a2+5a·b-3b2

=2|a|2+5|a||b|·cos120°-3|b|2

=2×32+5×3×4×-12-3×42=-60.

與向量的模有關(guān)的問(wèn)題

典例(1)(浙江高考)已知e1,e2是平面單位向量,且e1·e2=12.若平面向量b滿足b·e1=b·e2=1,則|b|=________.

(2)已知向量a,b的夾角為45°,且|a|=1,|2a-b|=10,則|b|=________.

解析(1)令e1與e2的夾角為θ,

∴e1·e2=|e1|·|e2|cosθ=cosθ=12.

又0°≤θ≤180°,∴θ=60°.

∵b·(e1-e2)=0,

∴b與e1,e2的夾角均為30°,

∴b·e1=|b||e1|cos30°=1,

從而|b|=1cos30°=233.

(2)∵a,b的夾角為45°,|a|=1,

∴a·b=|a||b|cos45°=22|b|,

|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.

答案(1)233(2)32

求向量的模的常見(jiàn)思路及方法

(1)求模問(wèn)題一般轉(zhuǎn)化為求模的平方,與向量數(shù)量積聯(lián)系,并靈活應(yīng)用a2=|a|2,勿遺忘開(kāi)方.

(2)a·a=a2=|a|2或|a|=a2,可以實(shí)現(xiàn)實(shí)數(shù)運(yùn)算與向量運(yùn)算的相互轉(zhuǎn)化.

活學(xué)活用

已知向量a,b滿足|a|=|b|=5,且a與b的夾角為60°,求|a+b|,|a-b|,|2a+b|.

解:∵|a+b|2=(a+b)2=(a+b)(a+b)

=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°

=50+2×5×5×12=75,

∴|a+b|=53.

∵|a-b|2=(a-b)2=(a-b)(a-b)

=|a|2+|b|2-2a·b

=|a|2+|b|2-2|a||b|cos60°=25,

∴|a-b|=5.

∵|2a+b|2=(2a+b)(2a+b)

=4|a|2+|b|2+4a·b

=4|a|2+|b|2+4|a||b|cos60°=175,

∴|2a+b|=57.

兩個(gè)向量的夾角和垂直

題點(diǎn)一:求兩向量的夾角

1.(重慶高考)已知非零向量a,b滿足|b|=4|a|,且a⊥(2a+b),則a與b的夾角為()

A.π3B.π2

C.2π3D.5π6

解析:選C∵a⊥(2a+b),∴a·(2a+b)=0,

∴2|a|2+a·b=0,

即2|a|2+|a||b|cos〈a,b〉=0.

∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,

∴cos〈a,b〉=-12,∴〈a,b〉=2π3.

題點(diǎn)二:證明兩向量垂直

2.已知向量a,b不共線,且|2a+b|=|a+2b|,求證:(a+b)⊥(a-b).

證明:∵|2a+b|=|a+2b|,

∴(2a+b)2=(a+2b)2.

即4a2+4a·b+b2=a2+4a·b+4b2,

∴a2=b2.

∴(a+b)·(a-b)=a2-b2=0.

又a與b不共線,a+b≠0,a-b≠0,

∴(a+b)⊥(a-b).

題點(diǎn)三:利用夾角和垂直求參數(shù)

3.已知a⊥b,|a|=2,|b|=3且向量3a+2b與ka-b相互垂直,則k的值為()

A.-32B.32

C.±32D.1

解析:選B∵3a+2b與ka-b相互垂直,

∴(3a+2b)·(ka-b)=0,

∴3ka2+(2k-3)a·b-2b2=0.

∵a⊥b,∴a·b=0,

又|a|=2,|b|=3,

∴12k-18=0,k=32.

求向量a與b夾角的思路

(1)求向量夾角的關(guān)鍵是計(jì)算a·b及|a||b|,在此基礎(chǔ)上結(jié)合數(shù)量積的定義或性質(zhì)計(jì)算cosθ=a·b|a||b|,最后借助θ∈0,π,求出θ的值.

(2)在個(gè)別含有|a|,|b|與a·b的等量關(guān)系式中,常利用消元思想計(jì)算cosθ的值.

層級(jí)一學(xué)業(yè)水平達(dá)標(biāo)

1.已知向量a,b滿足|a|=1,|b|=4,且a·b=2,則a與b的夾角θ為()

A.π6B.π4

C.π3D.π2

解析:選C由題意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.

2.已知|b|=3,a在b方向上的投影為32,則a·b等于()

A.3B.92

C.2D.12

解析:選B設(shè)a與b的夾角為θ.∵|a|cosθ=32,

∴a·b=|a||b|cosθ=3×32=92.

3.已知|a|=|b|=1,a與b的夾角是90°,c=2a+3b,d=ka-4b,c與d垂直,則k的值為()

A.-6B.6

C.3D.-3

解析:選B∵c·d=0,

∴(2a+3b)·(ka-4b)=0,

∴2ka2-8a·b+3ka·b-12b2=0,

∴2k=12,∴k=6.

4.已知a,b滿足|a|=4,|b|=3,夾角為60°,則|a+b|=()

A.37B.13

C.37D.13

解析:選C|a+b|=a+b2=a2+2a·b+b2

=42+2×4×3cos60°+32=37.

5.在四邊形ABCD中,=,且·=0,則四邊形ABCD是()

A.矩形B.菱形

C.直角梯形D.等腰梯形

解析:選B∵=,即一組對(duì)邊平行且相等,·=0,即對(duì)角線相互垂直,∴四邊形ABCD為菱形.

6.給出以下命題:

①若a≠0,則對(duì)任一非零向量b都有a·b≠0;

②若a·b=0,則a與b中至少有一個(gè)為0;

③a與b是兩個(gè)單位向量,則a2=b2.

其中,正確命題的序號(hào)是________.

解析:上述三個(gè)命題中只有③正確,因?yàn)閨a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.當(dāng)非零向量a,b垂直時(shí),有a·b=0,明顯①②錯(cuò)誤.

答案:③

7.設(shè)e1,e2是兩個(gè)單位向量,它們的夾角為60°,則(2e1-e2)·(-3e1+2e2)=________.

解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.

答案:-92

8.若|a|=1,|b|=2,c=a+b,且c⊥a,則向量a與b的夾角為_(kāi)_______.

解析:∵c⊥a,∴c·a=0,

∴(a+b)·a=0,即a2+a·b=0.

∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,

∴cos〈a,b〉=-12.

又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.

答案:120°

9.已知e1與e2是兩個(gè)夾角為60°的單位向量,a=2e1+e2,b=2e2-3e1,求a與b的

夾角.

解:因?yàn)閨e1|=|e2|=1,

所以e1·e2=1×1×cos60°=12,

|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,

|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,

且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,

所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,

所以a與b的夾角為120°.

10.已知|a|=2|b|=2,且向量a在向量b方向上的投影為-1.

(1)求a與b的夾角θ;

(2)求(a-2b)·b;

(3)當(dāng)λ為何值時(shí),向量λa+b與向量a-3b相互垂直?

解:(1)∵|a|=2|b|=2,

∴|a|=2,|b|=1.

又a在b方向上的投影為|a|cosθ=-1,

∴a·b=|a||b|cosθ=-1.

∴cosθ=-12,∴θ=2π3.

(2)(a-2b)·b=a·b-2b2=-1-2=-3.

(3)∵λa+b與a-3b相互垂直,

∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2

=4λ+3λ-1-3=7λ-4=0,∴λ=47.

層級(jí)二應(yīng)試能力達(dá)標(biāo)

1.已知|a|=2,|b|=1,且a與b的夾角為π3,則向量m=a-4b的模為()

A.2B.23

C.6D.12

解析:選B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.

2.在Rt△ABC中,C=90°,AC=4,則·等于()

A.-16B.-8

C.8D.16

解析:選D法一:因?yàn)閏osA=ACAB,故·=||·||cosA=||2=16,故選D.

法二:在上的投影為||cosA=||,故·=|cosA=||2=16,故選D.

3.已知向量a,b滿足|a|=1,|b|=2,且a在b方向上的投影與b在a方向上的投影相等,則|a-b|=()

A.1B.3

C.5D.3

解析:選C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因?yàn)閨a|=1,|b|

=2,所以cos〈a,b〉=0,即a⊥b,則|a-b|=|a|2+|b|2-2a·b=5.

4.如圖,在邊長(zhǎng)為2的菱形ABCD中,∠BAD=60°,E為BC的中點(diǎn),則·=()

A.-3B.0

C.-1D.1

解析:選C·=AB―→+12AD―→·(-)

=12·-||2+12||2

=12×2×2×cos60°-22+12×22=-1.

5.設(shè)向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,則|a|2+|b|2+|c|2的值是________.

解析:法一:由a+b+c=0得c=-a-b.

又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.

則c2=(a+b)2=a2+b2+2a·b=a2+b2=2,

∴|a|2+|b|2+|c|2=4.

法二:如圖,作==a,

=b,則=c.

∵a⊥b,∴AB⊥BC,

又∵a-b=-=,

(a-b)⊥c,∴CD⊥CA,

所以△ABC是等腰直角三角形,

∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.

答案:4

6.已知向量a,b的夾角為45°,且|a|=4,12a+b·(2a-3b)=12,則|b|=________;b在a方向上的投影等于________.

解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍負(fù)),b在a方向上的投影是|b|cos45°=2×22=1.

答案:21

7.已知非零向量a,b,滿足|a|=1,(a-b)·(a+b)=12,且a·b=12.

(1)求向量a,b的夾角;(2)求|a-b|.

解:(1)∵(a-b)·(a+b)=12,

∴a2-b2=12,

即|a|2-|b|2=12.

又|a|=1,

∴|b|=22.

∵a·b=12,

∴|a|·|b|cosθ=12,

∴cosθ=22,

∴向量a,b的夾角為45°.

(2)∵|a-b|2=(a-b)2

=|a|2-2|a||b|cosθ+|b|2=12,

∴|a-b|=22.

8.設(shè)兩個(gè)向量e1,e2,滿足|e1|=2,|e2|=1,e1與e2的夾角為π3,若向量2te1+7e2與e1+te2的夾角為鈍角,求實(shí)數(shù)t的取值范圍.

解:由向量2te1+7e2與e1+te2的夾角為鈍角,

得2te1+7e2·e1+te2|2te1+7e2|·|e1+te2|0.即

(2te1+7e2)·(e1+te2)0,化簡(jiǎn)即得

2t2+15t+70,解得-7

當(dāng)夾角為π時(shí),也有(2te1+7e2)·(e1+te2)0,

但此時(shí)夾角不是鈍角,

設(shè)2te1+7e2=λ(e1+te2),λ0,可得

2t=λ,7=λt,λ0,?λ=-14,t=-142.

∴所求實(shí)數(shù)t的取值范圍是

-7,-142∪-142,-12.

高二數(shù)學(xué)選修22教案最新文案3

新知初探

平面向量共線的坐標(biāo)表示

前提條件a=(x1,y1),b=(x2,y2),其中b≠0

結(jié)論當(dāng)且僅當(dāng)x1y2-x2y1=0時(shí),向量a、b(b≠0)共線

點(diǎn)睛(1)平面向量共線的坐標(biāo)表示還可以寫(xiě)成x1x2=y1y2(x2≠0,y2≠0),即兩個(gè)不平行于坐標(biāo)軸的共線向量的對(duì)應(yīng)坐標(biāo)成比例;

(2)當(dāng)a≠0,b=0時(shí),a∥b,此時(shí)x1y2-x2y1=0也成立,即對(duì)任意向量a,b都有:x1y2-x2y1=0?a∥b.

小試身手

1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的打“×”)

(1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()

(2)向量(2,3)與向量(-4,-6)反向.()

答案:(1)√(2)√

2.若向量a=(1,2),b=(2,3),則與a+b共線的向量可以是()

A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

答案:C

3.已知a=(1,2),b=(x,4),若a∥b,則x等于()

A.-12B.12C.-2D.2

答案:D

4.已知向量a=(-2,3),b∥a,向量b的起點(diǎn)為A(1,2),終點(diǎn)B在x軸上,則點(diǎn)B的坐標(biāo)為_(kāi)_______.

答案:73,0

向量共線的判定

典例(1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()

A.12B.13C.1D.2

(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判斷與是否共線?如果共線,它們的方向相同還是相反?

解析(1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

法二:假設(shè)a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組明顯無(wú)解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設(shè)不成立,故應(yīng)有a,b共線,所以1λ=21,即λ=12.

答案A

(2)解=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

∵(-2)×(-6)-3×4=0,∴,共線.

又=-2,∴,方向相反.

綜上,與共線且方向相反.

向量共線的判定方法

(1)利用向量共線定理,由a=λb(b≠0)推出a∥b.

(2)利用向量共線的坐標(biāo)表達(dá)式x1y2-x2y1=0直接求解.

活學(xué)活用

已知a=(1,2),b=(-3,2),當(dāng)k為何值時(shí),ka+b與a-3b平行,平行時(shí)它們的方向相同還是相反?

解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

a-3b=(1,2)-3(-3,2)=(10,-4),

若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,

解得k=-13,此時(shí)ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向.

∴k=-13時(shí),ka+b與a-3b平行且方向相反.

三點(diǎn)共線問(wèn)題

典例(1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點(diǎn)共線;

(2)設(shè)向量=(k,12),=(4,5),=(10,k),當(dāng)k為何值時(shí),A,B,C三點(diǎn)

共線?

解(1)證明:∵=-=(4,8),

=-=(6,12),

∴=32,即與共線.

又∵與有公共點(diǎn)A,∴A,B,C三點(diǎn)共線.

(2)若A,B,C三點(diǎn)共線,則,共線,

∵=-=(4-k,-7),

=-=(10-k,k-12),

∴(4-k)(k-12)+7(10-k)=0.

解得k=-2或k=11.

有關(guān)三點(diǎn)共線問(wèn)題的解題策略

(1)要判斷A,B,C三點(diǎn)是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點(diǎn)共線;

(2)使用A,B,C三點(diǎn)共線這一條件建立方程求參數(shù)時(shí),利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數(shù)的表達(dá)式.

活學(xué)活用

設(shè)點(diǎn)A(x,1),B(2x,2),C(1,2x),D(5,3x),當(dāng)x為何值時(shí),與共線且方向相同,此時(shí),A,B,C,D能否在同一條直線上?

解:=(2x,2)-(x,1)=(x,1),

=(1,2x)-(2x,2)=(1-2x,2x-2),

=(5,3x)-(1,2x)=(4,x).

由與共線,所以x2=1×4,所以x=±2.

又與方向相同,所以x=2.

此時(shí),=(2,1),=(-3,2),

而2×2≠-3×1,所以與不共線,

所以A,B,C三點(diǎn)不在同一條直線上.

所以A,B,C,D不在同一條直線上.

向量共線在幾何中的應(yīng)用

題點(diǎn)一:兩直線平行判斷

1.如圖所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,過(guò)點(diǎn)C作CE⊥AB于E,用向量的方法證明:DE∥BC;

證明:如圖,以E為原點(diǎn),AB所在直線為x軸,EC所在直線為y軸建立直角坐標(biāo)系,

設(shè)||=1,則||=1,||=2.

∵CE⊥AB,而AD=DC,

∴四邊形AECD為正方形,

∴可求得各點(diǎn)坐標(biāo)分別為E(0,0),B(1,0),C(0,1),D(-1,1).

∵=(-1,1)-(0,0)=(-1,1),

=(0,1)-(1,0)=(-1,1),

∴=,∴∥,即DE∥BC.

題點(diǎn)二:幾何形狀的判斷

2.已知直角坐標(biāo)平面上四點(diǎn)A(1,0),B(4,3),C(2,4),D(0,2),求證:四邊形ABCD是等腰梯形.

證明:由已知得,=(4,3)-(1,0)=(3,3),

=(0,2)-(2,4)=(-2,-2).

∵3×(-2)-3×(-2)=0,∴與共線.

=(-1,2),=(2,4)-(4,3)=(-2,1),

∵(-1)×1-2×(-2)≠0,∴與不共線.

∴四邊形ABCD是梯形.

∵=(-2,1),=(-1,2),

∴||=5=||,即BC=AD.

故四邊形ABCD是等腰梯形.

題點(diǎn)三:求交點(diǎn)坐標(biāo)

3.如圖所示,已知點(diǎn)A(4,0),B(4,4),C(2,6),求AC和OB交點(diǎn)P的坐標(biāo).

解:法一:設(shè)=t=t(4,4)

=(4t,4t),

則=-=(4t,4t)-(4,0)=(4t-4,4t),

=-=(2,6)-(4,0)=(-2,6).

由,共線的條件知(4t-4)×6-4t×(-2)=0,

解得t=34.∴=(3,3).

∴P點(diǎn)坐標(biāo)為(3,3).

法二:設(shè)P(x,y),

則=(x,y),=(4,4).

∵,共線,

∴4x-4y=0.①

又=(x-2,y-6),=(2,-6),

且向量,共線,

∴-6(x-2)+2(6-y)=0.②

解①②組成的方程組,得x=3,y=3,

∴點(diǎn)P的坐標(biāo)為(3,3).

應(yīng)用向量共線的坐標(biāo)表示求解幾何問(wèn)題的步驟

層級(jí)一學(xué)業(yè)水平達(dá)標(biāo)

1.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底的是()

A.e1=(0,0),e2=(1,-2)

B.e1=(-1,2),e2=(5,7)

C.e1=(3,5),e2=(6,10)

D.e1=(2,-3),e2=12,-34

解析:選BA中向量e1為零向量,∴e1∥e2;C中e1=12e2,∴e1∥e2;D中e1=4e2,∴e1∥e2,故選B.

2.已知點(diǎn)A(1,1),B(4,2)和向量a=(2,λ),若a∥,則實(shí)數(shù)λ的值為()

A.-23B.32

C.23D.-32

解析:選C根據(jù)A,B兩點(diǎn)的坐標(biāo),可得=(3,1),

∵a∥,∴2×1-3λ=0,解得λ=23,故選C.

3.已知A(2,-1),B(3,1),則與平行且方向相反的向量a是()

A.(2,1)B.(-6,-3)

C.(-1,2)D.(-4,-8)

解析:選D=(1,2),向量(2,1)、(-6,-3)、(-1,2)與(1,2)不平行;(-4,-8)與(1,2)平行且方向相反.

4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),則實(shí)數(shù)x的值為()

A.-3B.2

C.4D.-6

解析:選D因?yàn)?a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),所以4(x+3)-(x-6)=0,解得x=-6.

5.設(shè)a=32,tanα,b=cosα,13,且a∥b,則銳角α為()

A.30°B.60°

C.45°D.75°

解析:選A∵a∥b,

∴32×13-tanαcosα=0,

即sinα=12,α=30°.

6.已知向量a=(3x-1,4)與b=(1,2)共線,則實(shí)數(shù)x的值為_(kāi)_______.

解析:∵向量a=(3x-1,4)與b=(1,2)共線,

∴2(3x-1)-4×1=0,解得x=1.

答案:1

7.已知A(-1,4),B(x,-2),若C(3,3)在直線AB上,則x=________.

解析:=(x+1,-6),=(4,-1),

∵∥,∴-(x+1)+24=0,∴x=23.

答案:23

8.已知向量a=(1,2),b=(-2,3),若λa+μb與a+b共線,則λ與μ的關(guān)系是________.

解析:∵a=(1,2),b=(-2,3),

∴a+b=(1,2)+(-2,3)=(-1,5),

λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),

又∵(λa+μb)∥(a+b),

∴-1×(2λ+3μ)-5(λ-2μ)=0,

∴λ=μ.

答案:λ=μ

9.已知A,B,C三點(diǎn)的坐標(biāo)為(-1,0),(3,-1),(1,2),并且=13,=13,求證:∥.

證明:設(shè)E,F(xiàn)的坐標(biāo)分別為(x1,y1)、(x2,y2),

依題意有=(2,2),=(-2,3),=(4,-1).

∵=13,∴(x1+1,y1)=13(2,2).

∴點(diǎn)E的坐標(biāo)為-13,23.

同理點(diǎn)F的坐標(biāo)為73,0,=83,-23.

又83×(-1)-4×-23=0,∴∥.

10.已知向量a=(2,1),b=(1,1),c=(5,2),m=λb+c(λ為常數(shù)).

(1)求a+b;

(2)若a與m平行,求實(shí)數(shù)λ的值.

解:(1)因?yàn)閍=(2,1),b=(1,1),

所以a+b=(2,1)+(1,1)=(3,2).

(2)因?yàn)閎=(1,1),c=(5,2),

所以m=λb+c=λ(1,1)+(5,2)=(λ+5,λ+2).

又因?yàn)閍=(2,1),且a與m平行,

所以2(λ+2)=λ+5,解得λ=1.

層級(jí)二應(yīng)試能力達(dá)標(biāo)

1.已知平面向量a=(x,1),b=(-x,x2),則向量a+b()

A.平行于x軸

B.平行于第一、三象限的角平分線

C.平行于y軸

D.平行于第二、四象限的角平分線

解析:選C因?yàn)閍+b=(0,1+x2),所以a+b平行于y軸.

2.若A(3,-6),B(-5,2),C(6,y)三點(diǎn)共線,則y=()

A.13B.-13

C.9D.-9

解析:選DA,B,C三點(diǎn)共線,

∴∥,而=(-8,8),=(3,y+6),

∴-8(y+6)-8×3=0,即y=-9.

3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么()

A.k=1且c與d同向

B.k=1且c與d反向

C.k=-1且c與d同向

D.k=-1且c與d反向

解析:選D∵a=(1,0),b=(0,1),若k=1,則c=a+b=(1,1),d=a-b=(1,-1),明顯,c與d不平行,排除A、B.若k=-1,則c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c與d反向.

4.已知平行四邊形三個(gè)頂點(diǎn)的坐標(biāo)分別為(-1,0),(3,0),(1,-5),則第四個(gè)頂點(diǎn)的坐標(biāo)是()

A.(1,5)或(5,5)

B.(1,5)或(-3,-5)

C.(5,-5)或(-3,-5)

D.(1,5)或(5,-5)或(-3,-5)

解析:選D設(shè)A(-1,0),B(3,0),C(1,-5),第四個(gè)頂點(diǎn)為D,

①若這個(gè)平行四邊形為?ABCD,

則=,∴D(-3,-5);

②若這個(gè)平行四邊形為?ACDB,

則=,∴D(5,-5);

③若這個(gè)平行四邊形為?ACBD,

則=,∴D(1,5).

綜上所述,D點(diǎn)坐標(biāo)為(1,5)或(5,-5)或(-3,-5).

5.已知=(6,1),=(x,y),=(-2,-3),∥,則x+2y的值為_(kāi)_______.

解析:∵=++=(6,1)+(x,y)+(-2,-3)

=(x+4,y-2),

∴=-=-(x+4,y-2)=(-x-4,-y+2).

∵∥,

∴x(-y+2)-(-x-4)y=0,即x+2y=0.

答案:0

6.已知向量=(3,-4),=(6,-3),=(5-m,-3-m).若點(diǎn)A,B,C能構(gòu)成三角形,則實(shí)數(shù)m應(yīng)滿足的條件為_(kāi)_______.

解析:若點(diǎn)A,B,C能構(gòu)成三角形,則這三點(diǎn)不共線,即與不共線.

∵=-=(3,1),=-=(2-m,1-m),

∴3(1-m)≠2-m,即m≠12.

答案:m≠12

7.已知A(1,1),B(3,-1),C(a,b).

(1)若A,B,C三點(diǎn)共線,求a與b之間的數(shù)量關(guān)系;

(2)若=2,求點(diǎn)C的坐標(biāo).

解:(1)若A,B,C三點(diǎn)共線,則與共線.

=(3,-1)-(1,1)=(2,-2),=(a-1,b-1),

∴2(b-1)-(-2)(a-1)=0,∴a+b=2.

(2)若=2,則(a-1,b-1)=(4,-4),

∴a-1=4,b-1=-4,∴a=5,b=-3,

∴點(diǎn)C的坐標(biāo)為(5,-3).

8.如圖所示,在四邊形ABCD中,已知A(2,6),B(6,4),C(5,0),D(1,0),求直線AC與BD交點(diǎn)P的坐標(biāo).

解:設(shè)P(x,y),則=(x-1,y),

=(5,4),=(-3,6),=(4,0).

由B,P,D三點(diǎn)共線可得==(5λ,4λ).

又∵=-=(5λ-4,4λ),

由于與共線得,(5λ-4)×6+12λ=0.

解得λ=47,

∴=47=207,167,

∴P的坐標(biāo)為277,167.

高二數(shù)學(xué)選修22教案最新文案4

教學(xué)目標(biāo)

(1)使學(xué)生了解并會(huì)用二元一次不等式表示平面區(qū)域以及用二元一次不等式組表示平面區(qū)域;

(2)了解線性規(guī)化的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問(wèn)題、可行解、可行域以及解等基本概念;

(3)了解線性規(guī)化問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)易的實(shí)際問(wèn)題;

(4)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建模”和解決實(shí)際問(wèn)題的能力;

(5)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

教科書(shū)首先通過(guò)一個(gè)具體問(wèn)題,介紹了二元一次不等式表示平面區(qū)域.再通過(guò)一個(gè)具體實(shí)例,介紹了線性規(guī)化問(wèn)題及有關(guān)的幾個(gè)基本概念及一種基本解法-圖解法,并利用幾道例題說(shuō)明線性規(guī)化在實(shí)際中的應(yīng)用.

二、重點(diǎn)、難點(diǎn)分析

本小節(jié)的重點(diǎn)是二元一次不等式(組)表示平面的區(qū)域.

對(duì)學(xué)生來(lái)說(shuō),二元一次不等式(組)表示平面的區(qū)域是一個(gè)比較陌生、抽象的概念,按高二學(xué)生現(xiàn)有的知識(shí)和認(rèn)知水平難以透徹理解,因此學(xué)習(xí)二元一次不等式(組)表示平面的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論