版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年廣東省梅州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.0B.1C.∞D(zhuǎn).不存在但不是∞
2.當(dāng)x→0時(shí),x+x2+x3+x4為x的
A.等價(jià)無(wú)窮小B.2階無(wú)窮小C.3階無(wú)窮小D.4階無(wú)窮小
3.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
4.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)
5.
6.
7.
8.
9.冪級(jí)數(shù)的收斂半徑為()A.1B.2C.3D.4
10.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
11.設(shè)y=5x,則y'=A.A.5xln5
B.5x/ln5
C.x5x-1
D.5xlnx
12.
13.
14.若x→x0時(shí),α(x)、β(x)都是無(wú)窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型
15.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值
16.微分方程y'+x=0的通解()。A.
B.
C.
D.
17.
18.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
19.
20.
二、填空題(20題)21.微分方程xy'=1的通解是_________。
22.
23.
24.
25.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.曲線y=1-x-x3的拐點(diǎn)是__________。
38.
39.
40.
三、計(jì)算題(20題)41.
42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
45.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
46.求微分方程的通解.
47.求曲線在點(diǎn)(1,3)處的切線方程.
48.
49.
50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
52.證明:
53.求微分方程y"-4y'+4y=e-2x的通解.
54.
55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
57.
58.
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
四、解答題(10題)61.
62.
63.設(shè)z=z(x,y)是由F(x+mz,y+nz)=0確定的,其中F是可微函數(shù),m、n是
64.(本題滿分10分)
65.求方程y''2y'+5y=ex的通解.
66.
67.計(jì)算∫xcosx2dx.
68.
69.設(shè)區(qū)域D由x2+y2≤1,x≥0,y≥0所圍成.求
70.
五、高等數(shù)學(xué)(0題)71.求函數(shù)I(x)=
的極值。
六、解答題(0題)72.求∫xcosx2dx。
參考答案
1.D
2.A本題考查了等價(jià)無(wú)窮小的知識(shí)點(diǎn)。
3.C
4.A
5.D解析:
6.C
7.C
8.C解析:
9.A由于可知收斂半徑R==1.故選A。
10.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見(jiàn)的錯(cuò)誤是選C.如果畫(huà)個(gè)草圖,則可以避免這類(lèi)錯(cuò)誤.
11.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。
12.D
13.A
14.D
15.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
16.D所給方程為可分離變量方程.
17.B
18.A由于
可知應(yīng)選A.
19.D解析:
20.B
21.y=lnx+C
22.本題考查的知識(shí)點(diǎn)為重要極限公式。
23.1/2
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
24.
25.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知
26.
27.連續(xù)但不可導(dǎo)連續(xù)但不可導(dǎo)
28.由不定積分的基本公式及運(yùn)算法則,有
29.0
30.F(sinx)+C
31.
32.
33.
34.
解析:
35.-24.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:
36.ln2
37.(01)
38.f(0).
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f(0)存在,并沒(méi)有給出f(x)(x≠0)存在,也沒(méi)有給出f(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.
39.
本題考查的知識(shí)點(diǎn)為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.
這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒(méi)做變化.
40.
本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見(jiàn)的錯(cuò)誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
41.
42.
43.
44.
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
46.
47.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.
49.
則
50.函數(shù)的定義域?yàn)?/p>
注意
51.由等價(jià)無(wú)窮小量的定義可知
52.
53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
54.
55.由二重積分物理意義知
56.
57.由一階線性微分方程通解公式有
58.
59.
60.
列表:
說(shuō)明
61.
62.本題考查的知識(shí)點(diǎn)為求曲線的切線方程.切線方程為y+3=一3(x+1),或?qū)憺?x+y+6=0.求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)及函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值.所給問(wèn)題沒(méi)有給出切點(diǎn),因此依已給條件找出切點(diǎn)是首要問(wèn)題.得出切點(diǎn)、切線的斜率后,可依直線的點(diǎn)斜式方程求出切線方程.
63.解
64.本題考查的知識(shí)點(diǎn)為二重積分運(yùn)算和選擇二次積分次序.
65.
66.
67.
68.
69.將區(qū)域D表示為
則
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
問(wèn)題的難點(diǎn)在于寫(xiě)出區(qū)域D的表達(dá)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年實(shí)習(xí)律師面試題庫(kù)及標(biāo)準(zhǔn)解答
- 機(jī)械前沿新技術(shù)
- AI行情:市場(chǎng)動(dòng)態(tài)分析
- 2025 小學(xué)四年級(jí)思想品德上冊(cè)公共場(chǎng)合禮儀示范課件
- 2026年5G+工業(yè)互聯(lián)網(wǎng)融合報(bào)告
- 2025年生態(tài)環(huán)保型河道治理工程雨水收集利用技術(shù)創(chuàng)新可行性分析報(bào)告
- 2025年鈉離子電池電解液商業(yè)化應(yīng)用案例報(bào)告
- 優(yōu)化門(mén)診護(hù)理教學(xué):教師技能大賽課件集錦
- 僑胞之家維權(quán)制度
- 倉(cāng)庫(kù)理貨獎(jiǎng)罰制度
- 四川省成都市2023-2024學(xué)年高二上學(xué)期期末考試英語(yǔ)試題 含解析
- T-CCUA 006-2024 信息系統(tǒng)審計(jì)機(jī)構(gòu)服務(wù)能力評(píng)價(jià)
- 魯科版高中化學(xué)選擇性必修第一冊(cè)第2章章末復(fù)習(xí)建構(gòu)課課件
- DL∕T 5210.6-2019 電力建設(shè)施工質(zhì)量驗(yàn)收規(guī)程 第6部分:調(diào)整試驗(yàn)
- 2024年安徽省高考地理試卷(真題+答案)
- 裝修民事糾紛調(diào)解協(xié)議書(shū)
- 2023年P(guān)CB工程師年度總結(jié)及來(lái)年計(jì)劃
- 森林防火工作先進(jìn)個(gè)人事跡材料
- MH5006-2015民用機(jī)場(chǎng)飛行區(qū)水泥混凝土道面面層施工技術(shù)規(guī)范
- 施工交通疏導(dǎo)方案
- 1例低血糖昏迷的護(hù)理查房
評(píng)論
0/150
提交評(píng)論