2021年廣東省東莞市普通高校高職單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2021年廣東省東莞市普通高校高職單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2021年廣東省東莞市普通高校高職單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2021年廣東省東莞市普通高校高職單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2021年廣東省東莞市普通高校高職單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021年廣東省東莞市普通高校高職單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.若sinα與cosα同號(hào),則α屬于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

2.橢圓x2/4+y2/2=1的焦距()A.4

B.2

C.2

D.2

3.(x+2)6的展開式中x4的系數(shù)是()A.20B.40C.60D.80

4.一條線段AB是它在平面a上的射景的倍,則B與平面a所成角為()A.30°B.45°C.60°D.不能確定

5.若函數(shù)y=log2(x+a)的反函數(shù)的圖像經(jīng)過(guò)點(diǎn)P(-1,0),則a的值為()A.-2

B.2

C.

D.

6.拋物線y2-4x+17=0的準(zhǔn)線方程是()A.x=2B.x=-2C.x=1D.x=-1

7.兩個(gè)三角形全等是兩個(gè)三角形面積相等的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件

8.在△ABC中,角A,B,C所對(duì)邊為a,b,c,“A>B”是a>b的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件

9.下列函數(shù)中是奇函數(shù)的是A.y=x+3

B.y=x2+1

C.y=x3

D.y=x3+1

10.下列函數(shù)中,在區(qū)間(0,)上是減函數(shù)的是()A.y=sinxB.y=cosxC.y=xD.y=lgx

11.設(shè)是l,m兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m

B.若l//α,m⊥l,則m⊥α

C.若l//α,m//α,則l//m

D.若l⊥α,l///β則a⊥β

12.設(shè)i是虛數(shù)單位,若z/i=(i-3)/(1+i)則復(fù)數(shù)z的虛部為()A.-2B.2C.-1D.1

13.函數(shù)和在同一直角坐標(biāo)系內(nèi)的圖像可以是()A.

B.

C.

D.

14.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},則A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}

15.已知互為反函數(shù),則k和b的值分別是()A.2,

B.2,

C.-2,

D.-2,

16.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]

17.已知a∈(π,3/2π),cosα=-4/5,則tan(π/4-α)等于()A.7B.1/7C.-1/7D.-7

18.5人站成一排,甲、乙兩人必須站兩端的排法種數(shù)是()A.6B.12C.24D.120

19.某學(xué)校為了了解三年級(jí)、六年級(jí)、九年級(jí)這三個(gè)年級(jí)之間的學(xué)生視力是否存在顯著差異,擬從這三個(gè)年級(jí)中按人數(shù)比例抽取部分學(xué)生進(jìn)行調(diào)查,則最合理的抽樣方法是()A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機(jī)數(shù)法

20.若是兩條不重合的直線表示平面,給出下列正確的個(gè)數(shù)()(1)(2)(3)(4)A.lB.2C.3D.4

二、填空題(20題)21.設(shè){an}是公比為q的等比數(shù)列,且a2=2,a4=4成等差數(shù)列,則q=

。

22.不等式的解集為_____.

23.已知函數(shù),若f(x)=2,則x=_____.

24.化簡(jiǎn)

25.已知_____.

26.圓心在直線2x-y-7=0上的圓C與y軸交于兩點(diǎn)A(0,-4),B(0,一2),則圓C的方程為___________.

27.

28.Ig0.01+log216=______.

29.若lgx=-1,則x=______.

30.

31.

32.口袋裝有大小相同的8個(gè)白球,4個(gè)紅球,從中任意摸出2個(gè),則兩球顏色相同的概率是_____.

33.要使的定義域?yàn)橐磺袑?shí)數(shù),則k的取值范圍_____.

34.

35.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點(diǎn)P到直線b的距離為_____.

36.橢圓x2/4+y2/3=1的短軸長(zhǎng)為___.

37.集合A={1,2,3}的子集的個(gè)數(shù)是

。

38.已知數(shù)列{an}是各項(xiàng)都是正數(shù)的等比數(shù)列,其中a2=2,a4=8,則數(shù)列{an}的前n項(xiàng)和Sn=______.

39.

40.函數(shù)的定義域是_____.

三、計(jì)算題(5題)41.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).

42.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.

43.在等差數(shù)列{an}中,前n項(xiàng)和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.

44.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由。

45.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

四、簡(jiǎn)答題(5題)46.化簡(jiǎn)a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

47.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。

48.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程

49.在拋物線y2=12x上有一弦(兩端點(diǎn)在拋物線上的線段)被點(diǎn)M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長(zhǎng)度.

50.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC

五、解答題(5題)51.已知數(shù)列{an}是公差不為0的等差數(shù)列a1=2,且a2,a3,a4+1成等比數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=2/n(an+2),求數(shù)列{bn}的前n項(xiàng)和Sn.

52.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過(guò)點(diǎn)(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長(zhǎng).

53.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒(méi)有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

54.如圖,在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點(diǎn).(1)求證:EF//平面CB1D1;(2)求證:平面CAA1C1丄平面CB1D1

55.

六、證明題(2題)56.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2

+(y+1)2

=8.

57.己知sin(θ+α)=sin(θ+β),求證:

參考答案

1.D

2.D橢圓的定義.由a2=b2+c2,c2=4-2=2,所以c=,橢圓焦距長(zhǎng)度為2c=2

3.C由二項(xiàng)式定理展開可得,

4.B根據(jù)線面角的定義,可得AB與平面a所成角的正切值為1,所以所成角為45°。

5.D

6.D

7.A兩個(gè)三角形全等則面積相等,但是兩個(gè)三角形面積相等不能得到二者全等,所以是充分不必要條件。

8.C正弦定理的應(yīng)用,充要條件的判斷.大邊對(duì)大角,大角也就對(duì)應(yīng)大邊.

9.C

10.B,故在(0,π/2)是減函數(shù)。

11.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對(duì)于A:l與m可能異面,排除A;對(duì)于B;m與α可能平行或相交,排除B;對(duì)于C:l與m可能相交或異面,排除C

12.C復(fù)數(shù)的運(yùn)算及定義.

13.D

14.B集合的運(yùn)算.由CuB={1,3,5}得B={2,4},故A∩B={2}.

15.B因?yàn)榉春瘮?shù)的圖像是關(guān)于y=x對(duì)稱,所以k=2.然后把一式中的x用y的代數(shù)式表達(dá),再把x,y互換,代入二式,得到m=-3/2.

16.B

17.B三角函數(shù)的計(jì)算及恒等變換∵α∈(π,3π/2),cosα=-4/5,∴sinα=-3/5,故tanα=sinα/cosα=3/4,因此tanα(π/4-α)=1-tanα/(1+tanα)=1/7

18.B

19.C為了解三年級(jí)、六年級(jí)、九年級(jí)這三個(gè)年級(jí)之間的學(xué)生視力是否存在顯著差異,這種方式具有代表性,比較合理的抽樣方法是分層抽樣。

20.B若兩條不重合的直線表示平面,由直線和平面之間的關(guān)系可知(1)、(4)正確。

21.

,由于是等比數(shù)列,所以a4=q2a2,得q=。

22.-1<X<4,

23.

24.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

25.

26.(x-2)2+(y+3)2=5圓的方程.圓心在AB中垂線y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圓C的方程為(x-2)2+(y+3)2=5

27.0.4

28.2對(duì)數(shù)的運(yùn)算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.

29.1/10對(duì)數(shù)的運(yùn)算.x=10-1=1/10

30.-4/5

31.-2/3

32.

33.-1≤k<3

34.

35.

,以直線b和A作平面,作P在該平面上的垂點(diǎn)D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).

36.2橢圓的定義.因?yàn)閎2=3,所以b=短軸長(zhǎng)2b=2

37.8

38.2n-1

39.√2

40.{x|1<x<5且x≠2},

41.

42.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

43.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

44.

45.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

46.原式=

47.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=

PD=PC=2

48.點(diǎn)M是線段PB的中點(diǎn)又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為

49.∵(1)這條弦與拋物線兩交點(diǎn)

50.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC

51.(1)設(shè)數(shù)列{an}的公差為d,由a1=2和a2,a3,a4+1成等比數(shù)列,得(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論