版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年江蘇省鎮(zhèn)江市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案及部分解析)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
2.
3.
4.A.A.1
B.3
C.
D.0
5.設(shè)f(x)在點x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
6.
7.A.0B.1C.2D.-18.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
9.當(dāng)x→0時,與x等價的無窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
10.
11.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
12.
13.
14.當(dāng)x→0時,x2是x-ln(1+x)的().
A.較高階的無窮小B.等價無窮小C.同階但不等價無窮小D.較低階的無窮小15.設(shè)f(x)在點x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
16.
17.()。A.2πB.πC.π/2D.π/4
18.
19.方程z=x2+y2表示的二次曲面是().
A.球面
B.柱面
C.圓錐面
D.拋物面
20.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
二、填空題(20題)21.設(shè)f(x)在x=1處連續(xù),=2,則=________。22.
23.24.25.26.∫(x2-1)dx=________。
27.
28.
29.
30.
31.32.設(shè)y=,則y=________。
33.
34.
35.
36.
37.
38.
39.
40.設(shè)z=x2y2+3x,則三、計算題(20題)41.
42.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則43.
44.
45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
47.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
48.求微分方程y"-4y'+4y=e-2x的通解.
49.50.求微分方程的通解.51.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.
55.
56.57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.58.求曲線在點(1,3)處的切線方程.59.將f(x)=e-2X展開為x的冪級數(shù).60.證明:四、解答題(10題)61.
62.求曲線y=x2在(0,1)內(nèi)的一條切線,使由該切線與x=0、x=1和y=x2所圍圖形的面積最小。
63.
64.
65.
66.設(shè)y=x2=lnx,求dy。
67.
68.69.證明:在區(qū)間(0,1)內(nèi)有唯一實根.
70.將周長為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問繞邊長為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?
五、高等數(shù)學(xué)(0題)71.
()。
A.0B.1C.2D.4六、解答題(0題)72.
參考答案
1.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
2.A
3.A
4.B本題考查的知識點為重要極限公式.可知應(yīng)選B.
5.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
6.C
7.C
8.D
9.B?
10.B解析:
11.D本題考查的知識點為微分運算.
可知應(yīng)選D.
12.B
13.D
14.C解析:本題考查的知識點為無窮小階的比較.
由于
可知當(dāng)x→0時,x2與x-ln(1+x)為同階但不等價無窮?。蕬?yīng)選C.
15.C本題考查的知識點有兩個:連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個要素:若f(x)在點x0處連續(xù),則
(1)f(x)在點x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯誤是選D.這是由于考生沒有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點x0處可導(dǎo),則f(x)在點x0處必定連續(xù).
但是其逆命題不成立.
16.A解析:
17.B
18.A
19.D對照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.
20.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知
可知應(yīng)選A。21.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。22.由可變上限積分求導(dǎo)公式可知23.0
24.25.f(0).
本題考查的知識點為導(dǎo)數(shù)的定義.
由于f(0)=0,f(0)存在,因此
本題如果改為計算題,其得分率也會下降,因為有些考生常常出現(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運算錯誤:
因為題設(shè)中只給出f(0)存在,并沒有給出f(x)(x≠0)存在,也沒有給出f(x)連續(xù)的條件,因此上述運算的兩步都錯誤.
26.
27.eyey
解析:
28.1/(1-x)2
29.
本題考查的知識點為定積分運算.
30.
31.
32.
33.34.2.
本題考查的知識點為二次積分的計算.
由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二次積分計算可知
35.
36.
37.22解析:
38.0<k≤10<k≤1解析:
39.40.2xy(x+y)+3本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).
由于z=x2y2+3x,可知
41.
42.由等價無窮小量的定義可知
43.
則
44.由一階線性微分方程通解公式有
45.由二重積分物理意義知
46.
列表:
說明
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
48.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
49.
50.
51.
52.
53.
54.
55.
56.
57.函數(shù)的定義域為
注意
58.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
59.
60.
61.
62.
63.
64.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)防接種后兒童行為觀察與護(hù)理
- 居民小區(qū)衛(wèi)生間管理制度
- 衛(wèi)生院法律管理制度
- 衛(wèi)生員車輛管理制度
- 明斯克衛(wèi)生管理制度
- 家具廠衛(wèi)生清潔管理制度
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院慢病工作制度
- 社區(qū)衛(wèi)生院藥箱管理制度
- 棋牌店衛(wèi)生管理制度
- 體育館周邊衛(wèi)生管理制度
- 2025年山東省威海市環(huán)翠區(qū)數(shù)學(xué)六年級第一學(xué)期期末考試試題含解析
- 惠州園林管理辦法
- 山西省建筑工程施工安全管理標(biāo)準(zhǔn)
- 2025山西云時代技術(shù)有限公司校園招聘160人筆試參考題庫附帶答案詳解
- 拼多多公司績效管理制度
- 貿(mào)易公司貨權(quán)管理制度
- 生鮮采購年度工作總結(jié)
- 造價咨詢項目經(jīng)理責(zé)任制度
- 離婚協(xié)議書正規(guī)打印電子版(2025年版)
- FZ∕T 81008-2021 茄克衫行業(yè)標(biāo)準(zhǔn)
- 幼兒園大班社會課件:《我是中國娃》
評論
0/150
提交評論