信息愛好和比賽中的偏見 Information Favoritism and Scoring Bias in Contests_第1頁
信息愛好和比賽中的偏見 Information Favoritism and Scoring Bias in Contests_第2頁
信息愛好和比賽中的偏見 Information Favoritism and Scoring Bias in Contests_第3頁
信息愛好和比賽中的偏見 Information Favoritism and Scoring Bias in Contests_第4頁
信息愛好和比賽中的偏見 Information Favoritism and Scoring Bias in Contests_第5頁
已閱讀5頁,還剩92頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

NBERWORKINGPAPERSERIES

INFORMATIONFAVORITISMANDSCORINGBIASINCONTESTS

ShanglyuDeng

HanmingFang

QiangFu

ZenanWu

WorkingPaper31036

/papers/w31036

NATIONALBUREAUOFECONOMICRESEARCH

1050MassachusettsAvenue

Cambridge,MA02138

March2023

WethankAngusC.Chu,KevinHe,JiangtaoLi,AllenVong,RakeshVohra,MingYang,andseminarparticipantsattheUniversityofPennsylvania,UniversityofMacau,SingaporeManagementUniversity,andJinanUniversityforhelpfuldiscussions,suggestions,andcomments.FuthankstheSingaporeMinistryofEducationTier-1AcademicResearchFund(R-313-000-139-115)forfinancialsupport.WuthankstheNationalNaturalScienceFoundationofChina(Nos.72222002,72173002,and71803003),theWuJiapeiFoundationoftheChinaInformationEconomicsSociety(No.E21100383),andtheseedfundoftheSchoolofEconomics,PekingUniversity,forfinancialsupport.Anyremainingerrorsareourown.TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauof

EconomicResearch.

NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.

?2023byShanglyuDeng,HanmingFang,QiangFu,andZenanWu.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including?notice,isgiventothesource.

InformationFavoritismandScoringBiasinContests

ShanglyuDeng,HanmingFang,QiangFu,andZenanWu

NBERWorkingPaperNo.31036

March2023

JELNo.C72,D44,D82

ABSTRACT

Twopotentiallyasymmetricplayerscompeteforaprizeofcommonvalue,whichisinitiallyunknown,byexertingefforts.Adesignerhastwoinstrumentsforcontestdesign.First,shedecideswhetherandhowtodiscloseaninformativesignaloftheprizevaluetoplayers.Second,shesetsthescoringruleofthecontest,whichvariestherelativecompetitivenessoftheplayers.Weshowthattheoptimumdependsonthedesigner’sobjective.Abilateralsymmetriccontest—inwhichinformationissymmetricallydistributedandthescoringbiasissettooffsettheinitialasymmetrybetweenplayers—alwaysmaximizestheexpectedtotaleffort.However,theoptimalcontestmaydeliberatelycreatebilateralasymmetry—whichdisclosesthesignalprivatelytooneplayer,whilefavoringtheotherintermsofthescoringrule—whenthedesignerisconcernedabouttheexpectedwinner’seffort.Thetwoinstrumentsthusexhibitcomplementarity,inthattheoptimumcanbemadeasymmetricinbothdimensionseveniftheplayersareexantesymmetric.Ourresultsarequalitativelyrobustto(i)affiliatedsignalsand(ii)endogenousinformationstructure.Weshowthatinformationfavoritismcanplayausefulroleinaddressingaffirmativeactionobjectives.

ShanglyuDeng

DepartmentofEconomics

UniversityofMaryland

3114TydingsHall

7343PreinkertDr.

CollegePark,MD20742

sdeng1@

HanmingFang

DepartmentofEconomics

RonaldO.PerelmanCenter

forPoliticalScienceandEconomics

UniversityofPennsylvania

133South36thStreet,Suite150

Philadelphia,PA19104

andNBER

hanming.fang@

QiangFu

DepartmentofStrategyandPolicy

NUSBusinessSchool

15KentRidgeDrive

Singapore

bizfq@.sg

ZenanWu

SchoolofEconomics

PekingUniversity

Beijing,China

zenan@

2

1Introduction

Contestisawidelyadoptedmechanismthatmobilizesfocusede?ortstoachievestatedgoals.Inacontest,theorganizersetsalimitednumberofprizesandinvitesentries;con-tenderssinkcostlyandnonrefundablee?orts,andonlythefrontrunnersarerewarded.Gov-ernments,?rms,nonpro?torganizations,andevenwealthyindividualsoftensponsorR&Dconteststosolicitnoveltechnologicalsolutions,procureinnovativeproducts,orencouragescienti?cbreakthroughs(

Taylor

,

1995

;

FullertonandMcAfee

,

1999

;

CheandGale

,

2003

).

1

TheU.S.DepartmentofDefense(DoD)famouslyoperatestheSmallBusinessInnovationResearchprogram,whichpromotesprivateR&De?ortsonmilitarytechnology,andawardsprocurementcontractstooutstandinginnovators(

Bhattacharya

,

2021

).Theinternallabormarketsinside?rmsprovideanotheranalogy(

LazearandRosen

,

1981

;

GreenandStokey

,

1983

;

Nalebu?andStiglitz

,

1983

;

Rosen

,

1986

).Firmsinduceworkers’e?ortsbyscarcelysuppliedbonuspackages,promotions,andopportunitiesforcareeradvancement,aswellasthethreatoflayo?s.In2013,30%ofFortune500companieswereestimatedtorewardorpunishtheiremployeesbasedonrankingsystemsinspiredbyJackWelch’spracticeofthe“vitalitycurve.”

Theubiquityofcontest-likecompetitiveactivitieshassparkedextensiveandcontinuouse?orts,inbothpracticeandacademicresearch,toidentifyfeasibleande?cientmeansofadministeringsuchmechanisms(see,e.g.,

FuandWu

,

2019

,

2020

;

Fang,Noe,andStrack

,

2020

;

LemusandMarshall

,

2021

;

Hofstetter,Dahl,Aryobsei,andHerrmann

,

2021

).Twophenomenaarebroadlyobservedthatinspirecontestdesign.

First,discriminatorymeasuresareoftenadoptedtomanipulatethecompetitivebalanceofacompetition,whicheitherhandicaporfavorcertaincontenders.Forinstance,favoritehorsescanberequestedtocarryextraweightsinhorseracing(

Chowdhury,Esteve-Gonz′alez,

andMukherjee

,

2023

).In?rms’successionselectionprocesses,incumbentCEOsandboardmembersmaydeliberatelydevotetheire?ortstogroomingpreferredcandidates,withthecelebratedexamplesofGEandIdeaXerox(

FuandWu

,

2022

).GovernmentsinOECDcountriesstrivetosupportsmallandmedium-sizedenterprises(SMEs)throughpreferentialaccesstopublicprocurementopportunities(OECD,2018).

2

Second,contestantscanbesubjecttouncertaintysurroundingthenatureandenviron-

1Similarly,inSingapore,theMinistryofDefence(MINDEF)andSingaporeArmedForcessponsortheannualDefenseInnovationChallenge,whichprovideswinnerswithgrantsandtheopportunitytoco-developtheirsolutionswithMINDEF.TheEuropeanInnovationCounciladministersEuropeanSocialInnovationCompetitionschemestoincentivizeentrepreneurialsolutionsthatenhancesocietalwell-being,andtheAri-zonaStateUniversityInnovationOpenencouragesstudent-ledventurestoundertakehard-techR&D.

2ThereaderisreferredtoOECD(2018),SMEsinPublicProcurement:PracticesandStrategiesforSharedBene?ts,OECDPublicGovernanceReviews,OECDPublishing,Paris,

/10.1787/9789264307476-en

.

3

mentofthecontest—e.g.,theexactvalueoftheprize.Imaginethefollowingscenarios.

(i)Privatemilitarycontractors,wheninvestingintheirprototypestocompeteforDoD’sprocurementcontract,maynotbefullyinformedoftheexactcoststobeincurredwhenexecutingthedeliverycontract—e.g.,thee?ortsto?ne-tuneandmanufacturetheproductincompliancewithDoD’sregulationsandprovisions—whichcausesun-certaintyabouttheeventualpro?tabilityofthecontract.

(ii)Workersinsidea?rm,whencompetingforavacancy,areoftenunawareofthenatureandchallengeofthenewpost—e.g.,thescopeofdutiesandtheresources,andsupportavailablefromseniormanagement—anditsimplicationsforfuturecareeradvancement.

(iii)TheArizonaStateUniversityInnovationOpenencouragesstudent-ledventurestoundertakehard-techR&D.Itawardsthewinnernotonlycashprizesbutalsoaccesstotheuniversity’sincubatorandacceleratorprogramandopportunitytocollaboratewiththesponsoringcompanies,whichareestablished?rmsinrelevantareas.However,theoptionvaluesofthesenonmonetaryrewardscannotbeascertainedwithoutsu?cientdetails—e.g.,theresourcesavailablefromtheincubatorandtheextentofinvolvementandcommitmentofthesponsoringcompanies.

Thesephenomenasparknaturalquestionsforcontestdesign.First,howshouldacontestdesigneroptimallysetbiasesincontestsfore?cientincentiveprovision—i.e.,whichcontes-tantsaretobetreatedpreferentially,andtowhatextent?Second,howshouldthedesignerdistributeherinformation—i.e.,shouldshediscloseherinformationand,ifso,towhom?

Thispaperexploresoptimalcontestdesigntoaddresstheabovequestions.Incontrasttothevastmajorityofpreviousstudiesofcontestdesign,weallowthecontestdesignertodeploytwoinstrumentsandchooseanoptimalcombination:(i)apotentiallyselectiveinformationdisclosureschemethatmaydiscloseinformationtooneplayerwhileconcealingitfromtheotherand(ii)ascoringbiasthatcaneitherdiscountorin?ateacontestant’sperceivedoutputintheevaluationprocessrelativetoothers.

ASnapshotoftheModelWeconsideracontestinwhichtwopotentiallyasymmetricplayerscompeteforaprizeofacommonvalue.Theprizevalueisunknownandcanbeeitherhighorlow,withapubliclyknowndistribution.Playerssimultaneouslycommittotheire?ortstoviefortheprize—e.g.,privatemilitarycontractors’e?ortstodeveloptheirprototypes—whilethee?ortincursaconstantmarginalcost.Thewinnerisselectedthroughanall-payauction(see,e.g.,

HillmanandRiley

,

1989

;

Baye,Kovenock,andDeVries

,

1993

,

1996

;

CheandGale

,

1998

).Thedesignerevaluatesplayers’entries;eachplayer’se?ortisconvertedintoascore,andthehigherscorerwins.Theasymmetryoftheplayersissuch

4

thatplayer1bearsaweaklyhighermarginale?ortcostc1thanplayer2—i.e.,c1>c2—sothelatteristhefavoriteinthecontest.

Thedesignerconductsaninvestigationandacquiresaninformativebinarysignalabouttheunderlyingprizevalue,whichenablesamorepreciseposteriorthroughBayesianupdat-ing.Priortothecompetition,thedesignercommitstothecontestrule,whichconsistsoftwoelements.First,adisclosureschemespeci?eswhetherthesignalistobedisclosedandwhichplayeristoreceiveit.Thedisclosureschemeisasymmetricwhenthedesignerconveysthesignaltoonlyoneplayerwhileconcealingitfromtheother,inwhichcasetherecipientisawardedinformationfavoritism.Forinstance,theorganizerofabusinesspitchingcom-petitionmaybriefpreferredentrepreneursmoreelaboratelyonthefundingopportunitiesavailabletowinningprojects.Second,acoe?cientisimposedoneachplayer’se?orttogeneratehisscore.Wenormalizethecoe?cientfortheunderdog—i.e.,player1—tooneandthatforplayer2to6>0,whichiscalledascoringbias.Thebiascanbeinterpretedasanominaljudgingrule,aswellasmeasuresthatelevateordiscountone’s(perceived)output.Forinstance,theleadingcandidateforcorporatesuccessionisoftenappointedthepresidentorCOO,whichendowsthemaccesstoadditionalcorporateresourcesandimprovestheirvisibilitytotheboard.

Weconsidertwoobjectivesforcontestdesign.The?rstistheusualmaximizationofexpectedtotale?ort(see,e.g.,

MoldovanuandSela

,

2001

;

Moldovanu,Sela,andShi

,

2007

).Forinstance,thegovernmentoranonpro?torganizationmayuseanR&Dchallengetofuelthepublic’sinterestinacertainareaofscienti?cortechnologicalresearch;e.g.,cleanenergy.Thesecondisthemaximizationoftheexpectedwinner’se?ort,whichhasattractedincreasinginterestinrecentliterature(see,e.g.,

MoldovanuandSela

,

2006

;

FuandWu

,

2022

).Consider,forinstance,acontestsponsoredbyapharmaceuticalcompanytoprocureaninnovativeingredient.Onlythequalityofthewinningsolutionaccruestothebene?tofthesponsor.Asweshowbelow,theoptimalcontestdesigncruciallydependsonwhetherthedesigneraimstomaximizetheexpectedtotale?ortortheexpectedwinner’s.Intuitively,thedi?erenceisdrivenpartlybythefactthattheexpectedtotale?ortisthesumofthemeans,whiletheexpectedwinner’se?ortisthemodi?ed?rst-orderstatistic,ofthe(random)e?ortvariablesbythetwoplayers.

3

SummaryofResultsandImplicationsThecontestgamecanbeviewedasanall-payauctionwithinterdependentvaluationsanddiscretesignalspaces.

Siegel

(

2014

)providedthetechniqueforthecasewithaneutralscoringrule6=1.Weextendtheanalysistocharacterizethemixed-strategyequilibrium,whileallowingforabiasedscoringrule61,

3Itisnoteworthythatinourcontext,theexpectedwinner’se?ortisnotthesimplehigheste?ortexceptforthecaseof6=1.Underabiasedscoringrule(61),thewinnermaynotbetheonewhoexertsthehigheste?ort.Wethuscalltheexpectedwinner’se?ortamodi?ed?rst-orderstatistictore?ectthenuance.

5

whichpavesthewayfortheoptimalcontestdesign.

Resultsforthemaximizationofexpectedtotale?orta?rmtheconventionalwisdomthatalevelplaying?eldfuelscompetition.Theoptimumisachievedbyanexpostsymmetriccontest,whichsetsthescoringbiasto6=c2/c1,togetherwithasymmetricdisclosurescheme(fulldisclosureorfullconcealment).Neitherplayerisawardedinformationfavoritism.Thebias6=c2/c1,calledthefairbiasofthecontest,preciselyo?setstheinitialadvantageofplayer2intermsofthemarginalcostofe?ort.

Theoptimalcontestdesigndepartsfromtheconventionalwisdomwhenthedesigneraimstomaximizetheexpectedwinner’se?ort.Inacomplete-informationall-payauction,thefairbiasmaximizestheexpectedtotale?ortandtheexpectedwinner’se?ortsimultaneously(see,e.g.,

Fu

,

2006

).Inourcontext,thedesignermaypreferatilting-and-relevelingcontest,whichcreatesexpostbilateralasymmetrybetweenplayers.Speci?cally,thedesignermayawardoneplayerinformationfavoritism—i.e.,disclosinghersignalexclusively—whilerelevelingtheplaying?eldbylettingthescoringbiasdeviatefromthefairleveltofavortheother.Threeobservationsarenoteworthy.

(i)Thetilting-and-relevelingcontestcanbeoptimalevenifplayersareexantesymmetric.

(ii)Whenplayersareexanteasymmetric,thetilting-and-relevelingcontest,wheneveroptimal,awardstheunderdog,player1,informationfavoritism.

(iii)Thetwoinstruments—i.e.,disclosureschemeandscoringbias—arecomplementarytoeachother:Asymmetryneveremergesintheoptimuminasingledimension;theoptimalcontestiseitherexpostsymmetric(symmetricdisclosuretogetherwithfairbias)orexpostasymmetricintermsofbothinformationdisclosureandscoringrule.

Atilting-and-relevelingcontestcouldenableanupwardshiftofthewinner’se?ortdistri-butionundercertaincircumstances.Weelaborateonthelogicofourresultsinthissimplebutcounterintuitivecasewithsymmetricplayers.Speci?cally,wecompareabilaterallyasymmetriccontest—whichdisclosesthesignaltoplayer1andsetsafavorablescoringbias6>1forplayer2—withasymmetricone,inwhichthesignalisconcealedfrombothplayersand6=1.

Assumeaunitymarginale?ortcost.Inthesymmetriccontest,itisstraightforwardtoinferthattheire?ortsareboundedfromabovethecommonexpectedprizevalue.Wenowletthedesigner“tilt”thecontestbydisclosingthesignaltoplayer1—whichallowshimtoupdatehisbeliefabouttheprizevalue—whilemaintainingtheneutralscoringrule.Itiscrucialtonotethatplayer1’smixedstrategywouldbetype-dependent:Thebiddingsupportsforlowandhightypes—i.e.,player1whenreceivinglowandhighsignals,respectively—donotoverlap.Player2istheuninformed,sohecontinuestobidaccordingtotheprior,

6

althoughhetakesintoaccountthefactthatplayer1receivesasignal.Theexpectedwinner’se?ortinthiscontestfallsshortoftheinitiallysymmetricone.Thelowtypeisdiscouragedbyhislowvaluation.Despitethehighvaluation,thehightype,whoisnowanexpostfavoriterelativetotheuninformedplayer2,hasnoincentivetoraisehismaximume?ort—i.e.,theuppersupportofhisbiddingstrategy—sincehisopponent’se?ortscontinuetobeboundedbytheprior.

Nowweletthedesigner“relevel”thecontestbylifting6above1.Thescoringrulefavorsplayer2,whicha?ectsthelowandhightypesofplayer1di?erently.Thebiasfurthersqueezesthelowtype,whilediminishingtheadvantageofthehightype.Thelatteristhusforcedtostepuphise?ort.Asaresult,thehightype’sbiddingsupportisstretchedupward.Thereexistsauniquescoringbias—calledtherelevelingbias—underwhich(i)thelowtyperemainsinactivewithprobabilityone,(ii)boththehightypeandtheuninformedplayer2remainactivewithprobabilityone,and(iii)thehightype’smaximume?ortrisestohisupdatedprizevaluation.

Insummary,thetilting-and-relevelingcontestmayoutperformthesymmetriconewhenahighsignalisrealized,inwhichcasethehigh-typeplayer1maycontributeahigherwinner’se?ortthatisotherwiseimpossible.Theformercontestunderperformsthelatterwhenalowsignalappears,becausethelowtypewouldexitthecompetition.However,thelossispartlymadeupforbyplayer2:Hebidsactivelyregardlessoftherealizedsignal.Weidentifyaconditionthatsummarizesthetrade-o?anddeterminestheoptimum.Thesametrade-o?governsthecontestdesignwithasymmetricplayersandexplainstheallocationofinformationfavoritismandfavorablescoringbiasbetweentheweakandstrongcontenders.Section

3.2.2

delvesintothelogicindepth.

Weextendourmodeltothreealternativesettings.Inthe?rst,thedesignerdecideswhethertoprovideplayerswithrelevantinformation,andplayerscanacquireinterdependentsignalsfromtheinformation(

MilgromandWeber

,

1982

).Thesecondallowsthedesignertochoosetheinformationstructureofherinvestigation,whichcorrespondstotheconceptoftheBayesianpersuasionapproachpioneeredby

KamenicaandGentzkow

(

2011

).Thethirdextensionrequiresthattheweakerplayerwinwithaminimumprobability,whichmirrorsthepracticeofa?rmativeaction(

CoateandLoury

,

1993

).Weshowthatourmainresultsarequalitativelyrobusttothesemodelingvariationswithadditionalinsights.

RelatedLiteratureInthispaper,weconsidertheoptimaldesignofacontestmodeledasanall-payauction.Thecontestmodelcanbeviewedasavariantofthefamilyofall-payauctionswithinterdependentvaluations,includingthoseof

KrishnaandMorgan

(

1997

);

LizzeriandPersico

(

2000

);

Siegel

(

2014

);

RentschlerandTurocy

(

2016

);

LuandParreiras

(

2017

);and

Chi,Murto,andV¨alim¨aki

(

2019

).Ourstudyisprimarilylinkedtotwostrands

7

oftheliteratureoncontestdesign:(i)(identity-dependent)di?erentialtreatmentsand(ii)informationdisclosure.Tothebestofourknowledge,wearethe?rsttoallowthedesignerto?ne-tunethetwoinstrumentssimultaneouslyandchoosetheiroptimalcombination.

Anenormousamountofscholarlye?orthasbeenexpendedontheoptimalwaytobiasacontestbyimposingdi?erentiatedtreatments(

MealemandNitzan

,

2016

).Theliteraturehasconventionallyespousedthemeritsofalevelplaying?eldforfuelingcompetitionandsug-gestedhandicappingthefavoritetoo?setinitialasymmetrybetweenplayers—e.g.,

Epstein,

Mealem,andNitzan

(

2011

);

Franke,Kanzow,Leininger,andSchwartz

(

2013

,

2014

);

Franke,

Leininger,andWasser

(

2018

).Ahandfulofrecentstudies—e.g.,

DrugovandRyvkin

(

2017

);

FuandWu

(

2020

);

BarbieriandSerena

(

2022

);

WasserandZhang

(

2023

);

EcheniqueandLi

(

2022

)—identifythecontextsinwhichtheoptimalcontestmightinsteadrequireupsettingtheinitialbalanceoftheplaying?eld.However,thisstrandofstudiesmainlyfocusesontheoptimalconstructionofidentity-dependenttreatmentsanddoesnotinvolveinformationdisclosure.

Theliteraturehasincreasinglyrecognizedinformationdisclosureasavaluableadditiontoacontestdesigner’stoolkit,e.g.,

Halac,Kartik,andLiu

(

2017

)and

Ely,Georgiadis,

Khorasani,andRayo

(

2022

).

4

Lu,Ma,andWang

(

2018

)and

Serena

(

2022

)exploreoptimaldisclosureincontestswithcontestantsofindependentandprivatetypes.Thesestudiesrequiresymmetricdisclosurerules,suchthatthesignalfromthedesignermustbepublic.

W¨arneryd

(

2012

)considersacommon-valuecontestandallowsonlyaportionoftheplayerstoknowtheprizevalue.Heshowsthatselectivelyinformingplayersoftheprizevalueissuboptimalwhenthedesignermaximizestotale?ort.TheBayesianpersuasionapproachhasbeenappliedinahandfulofstudiestoexploreoptimalinformationdisclosureincontests;e.g.,

ZhangandZhou

(

2016

);

ChenandChen

(

2022

);

MeloPonce

(

2021

);and

Antsyginaand

Teteryatnikova

(

2022

).However,thesestudiesfocusexclusivelyoninformationdisclosureincontests.

Therestofthepaperproceedsasfollows.Section

2

setsupthemodelandSection

3

carriesouttheanalysis.Section

4

presentsthreeextensionsandSection

5

concludes.Appendix

A

collectstheanalyticalresultsforSection

4.1

.ProofsofourmainresultsarecollectedinAppendix

B

.

2TheModel

Tworisk-neutralplayers,indexedbyieN={1,2},competeforaprizeofacommonvalueve{vH,vL},withvH>vL>0.ThehighvaluevHisrealizedwithaprobability

4Bothstudiesfocusoninformationdisclosureinthecourseofdynamiccontests.Thisstrandofliteraturealsoincludes

Yildirim

(

2005

);

Aoyagi

(

2010

);

Ederer

(

2010

);and

GoltsmanandMukherjee

(

2011

).

8

Pr(v=vH)=:μe(0,1),withthelowvaluevLtoberealizedwiththecomplementaryprobability.Playersareinitiallyuninformedabouttheprizevalue,whileitsdistributioniscommonknowledge.Theysimultaneouslyexerttheire?ortsxi>0towintheprize.Oneplayer’se?ortincursaconstantmarginale?ortcostci>0.Withoutlossofgenerality,weassumethatplayer2isthestrongercontender;i.e.,c1>c2.

Winner-selectionMechanismandScoringBiasThecontestdesignerimposesascor-ingbiasδi>0oneachplayeri’se?ortentryxi,whichgenerateshisscoreδixi.Wenormalizeδ1to1andsetδ2=δ>0.Fixingasetofe?ortentriesz:=(x1,x2)eR,player1’sprob-abilityofwinningthecontest—i.e.,thecontestsuccessfunction(CSF)—isgivenby

(0,

1,p1(x1,x2)=,

ifx1>δx2,

ifx1=δx2,

ifx1<δx2,

andplayer2winswithaprobabilityp2(x1,x2)=1-p1(x1,x2).Thatis,aplayerwinsthecontestwithcertaintyifhisscoreexceedsthatofhisopponent.Thewinnerispickedrandomlyintheeventofatieinscores.

DisclosureSchemesThedesignerconductsaninvestigation

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論