版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
MachineIntelligenceResearch
20(1),February2023,57-78DOI:10.1007/s11633-022-1361-0
MachineLearningforBrainImagingGenomicsMethods:AReview
Mei-LingWang1,2WeiShao1,2Xiao-KeHao3Dao-QiangZhang1,2
1CollegeofComputerScienceandTechnology,NanjingUniversityofAeronauticsandAstronautics,Nanjing211106,China
2KeyLaboratoryofPatternAnalysisandMachineIntelligence,MinistryofIndustryandInformationTechnology,Nanjing211106,China
3SchoolofArtificialIntelligence,HebeiUniversityofTechnology,Tianjin300401,China
Abstract:Inthepastdecade,multimodalneuroimagingandgenomictechniqueshavebeenincreasinglydeveloped.Asaninterdiscip-linarytopic,brainimaginggenomicsisdevotedtoevaluatingandcharacterizinggeneticvariantsinindividualsthatinfluencephenotyp-icmeasuresderivedfromstructuralandfunctionalbrainimaging.Thistechniqueiscapableofrevealingthecomplexmechanismsbymacroscopicintermediatesfromthegeneticleveltocognitionandpsychiatricdisordersinhumans.Itiswellknownthatmachinelearn-ingisapowerfultoolinthedata-drivenassociationstudies,whichcanfullyutilizeprioriknowledge(intercorrelatedstructureinforma-tionamongimagingandgeneticdata)forassociationmodelling.Inaddition,theassociationstudyisabletofindtheassociationbetweenriskgenesandbrainstructureorfunctionsothatabettermechanisticunderstandingofbehaviorsordisorderedbrainfunctionsisex-plored.Inthispaper,therelatedbackgroundandfundamentalworkinimaginggenomicsarefirstreviewed.Then,weshowtheunivari-atelearningapproachesforassociationanalysis,summarizethemainideaandmodellingingenetic-imagingassociationstudiesbasedonmultivariatemachinelearning,andpresentmethodsforjointassociationanalysisandoutcomeprediction.Finally,thispaperdiscussessomeprospectsforfuturework.
Keywords:Brainimaginggenomics,machinelearning,multivariateanalysis,associationanalysis,outcomeprediction.
Citation:M.L.Wang,W.Shao,X.K.Hao,D.Q.Zhang.Machinelearningforbrainimaginggenomicsmethods:Areview.MachineIntelligenceResearch,vol.20,no.1,pp.57-78,2023.
/10.1007/s11633-022-1361-0
1Introduction
Inrecentyears,withthedevelopmentofcognitiveneuroscience,neuroimaginghasbroughtnewvitalitytothestudyoftheworkingmechanismofthehumanbrain.Atthesametime,withthedevelopmentofnoninvasivebrainimagingtechnology,researchershopetogainnewinsightsintotheimagingcharacteristicsandmolecularmechanismsofthebrain,aswellastheirimpactonnor-malanddisorderedbrainfunctionandbehavior.Com-monlyusedbrainimagingtechniquesincludestructuralmagneticresonanceimaging(sMRI),functionalmagneticresonanceimaging(fMRI),diffusiontensorimaging(DTI),andpositronemissiontomographyimaging(PET).Inaddition,withthedevelopmentofgenetictech-nology,researcherscanidentifygeneticmarkersassoci-atedwithneurologicalandpsychiatricdiseasesfromamorerefinedmolecularlevel(suchassinglenucleotidepolymorphisms(SNPs)).
Withrecenttechnologicaladvancesinacquiringmul-
Review
ManuscriptreceivedApril16,2022;acceptedAugust1,2022
RecommendedbyAssociateEditorJun-ZhouHuang
oInstituteofAutomation,ChineseAcademyofSciencesandSpringer-VerlagGmbHGermany,partofSpringerNature2023
timodalbrainimagingdataandhigh-throughputgenom-icsdata,brainimaginggenomicsisemergingasarapidlygrowingresearchfield.HaririandWeinberger[
1
]proposedtheconceptofimaginggenomicsorimaginggenetics,whichperformsintegrativestudiesthatanalysegeneticvariations,suchasSNPs,aswellasepigeneticandcopynumbervariations(CNVs),molecularfeaturescapturedbyvariousomicsdata,andbrainimagingquantitativetraits(QTs),coupledwithotherbiomarker,clinical,andenvironmentaldata[
2
,
3
].
Asanemergingdatascience,brainimaginggenomicshasachievedrapidgrowth,whichisgreatlyattributedtothepublicavailabilityofvaluableimagingandgenomics
datasets.Duetotheopen-sciencenatureoftheAlzhei-
mer'sDiseaseNeuroimagingInitiative(ADNI)project[
4
],hundredsofpublicationsusingADNIimaginggenomicsdatahavebeenproducedinthepastdecade,yieldingin-novativemachinelearningmethodsandnovelbiomedicaldiscoveries.SimilartotheADNI,anincreasingnumberoflandmarkstudiesareproducingbigdata,includingmulti-dimensionalimagingandomicsmodalities,makingthemavailabletotheresearchcommunity.TheseincludetheEnhancingNeuroImagingGeneticsthroughMetaAna-lysis(ENIGMA)Consortium[
5
],PhiladelphiaNeurodevel-
58
opmentalCohort(PNC)[
6
]andParkinson'sProgressionMarkersInitiative(PPMI)[
7
].
Brainimaginggenomicsmainlyusesbrainimagingtechnologytoevaluatethegeneticinfluenceonindividu-alsbyusingbrainstructureandfunctionasphenotypes,andexploreshowgenesaffecttheneuralstructureandfunctionofthebrain,aswellastheresultingneurologic-alpathology.Studyingtheassociationbetweengeneticsandbrainstructureandfunction,andbuildingavisiblebridgebetween“genesandbrain”,canbetterrevealthepathogenesisofneuropsychiatricdiseases[
8
-
10
].Imagingge-nomicscanalsoidentifybiologicalindicatorsoren-dophenotypesofabraindisease,whichprovidesamoreaccuratemethodforpredictinganddiagnosingthedis-ease.Specifically,mostresearchersconsiderSNPsasgen-otypedataforassociationanalysis.Intheacquisitionofendophenotypicdata,researchersmostlyusebrainima-gingdata(i.e.,MRI)inclinicforanalysis.Forexample,sMRI,animagingtechniquethatmeasuresthestructuralorganizationofthebrain,canquantifyabnormalitiesinmorphology(i.e.,graymattervolume).fMRIscanshavebeenshowntobeeffectiveinrevealingfunctionalcon-nectivitypatternsofthebrain.Basedondifferentmodal-itiesofbrainimagingtechnology,atpresent,imagingge-nomicsmainlyfocusesontheassociationanalysisbetween
geneSNPsandbrainstructure,function,andconnectiv-ity[
11
-
14
].
Earlyimaginggenomicsapproachesconsistedofuni-variatepairedstatisticalanalysismethods,wheremul-tipletestsareemployedtofindtheassociationbetweenSNPsorgenesandcomplexdiseasesormeasurablequant-itativetraits(QTs).Genome-wideassociationstudy(GWAS)usesthewholegenomehigh-throughputsequen-cingtechnologytoclassifythesequencevariationinthegenomeoftheresearchobject,andfinallyselectssignific-
antSNPsviathebiostatisticsmethodsandbioinformat-icsmethods
[
15
].SincethefirstGWASresearchpaperonage-relatedmaculardegenerationpublishedinSciencein2005
[
16
],thismethodhasbeenusedintheanalysisofpsy-
chiatricdisorders[
17
].GWAShasplayedagreatroleinthestudyofimaginggenetics,buttherearealsosomeprob-lems,suchasstrictmultiplecorrection,sothatmanysmalleffectvariantscannotpassthecorrectionlevel.Inaddition,GWAScanonlyobtainasingledegreeofassoci-ationbetweengeneticvariationandtraits,andcannotwellexplainthecomplexmolecularmechanismsofthebrain.
Inrecentyears,withtherapiddevelopmentofma-chinelearninginacademiaandindustry,researchershavetriedtousethesedataanalysistoolstosolvesomeprob-lemsinmanyfields.Intheassociationanalysisofima-ginggenetics,inadditiontounivariatestatisticalanalys-is,themultivariatemachinelearningmodelisthemostwidelyused,andithasidentifieddisease-sensitiveima-gingandgeneticbiomarkers.Internationally,someschol-
MachineIntelligenceResearch20(1),February2023
arshavealsowrittenareviewofrelatedmethodsinima-ginggenetics.Forexample,Medlandetal.[
18
]haveraisedtheproblemsandchallengesofusingtraditionalunivari-atestatisticalmodelstoprocesslarge-scalegenome-widebrainimagingassociationanalysis,reviewingthere-searchresultsindifferentcentraldatabases.LiuandCal-houn[
19
]summarizedtheapplicationofothermultivariatemethodssuchasindependentcomponentanalysisinima-ginggenetics.Thompsonetal.[
20
]focusedontheassoci-ationanalysisbetweengeneticsandbrainstructurecon-nectivityandfunctionalnetworks.Basedontheabovere-viewworks,thisarticleisdevotedtoprovidingcompre-
hensiveandup-to-datecoverageofmachinelearning
methodsinbrainimaginggenomics.
Fig.
1
isadoptedtopresentaschematicofthetopicscoveredinbrainima-ginggenomics.Oneofthemaingoalsofimaginggenom-icsbasedonmachinelearningistorealizeassociationanalysisstudiesforunderstandingmechanismsandpath-ways.Wegrouptheseimaginggenomicsbasedonma-chinelearningmethodsintotwocategories.Thefirstcat-egorymainlyusesregressionmodelstoidentifycomplexmulti-SNPand/ormulti-QTassociations.Mostofthere-gressionmodelsdiscussedearliercanbedescribedusingtheregularizedlossfunctionframework.Asparsity-indu-cingregularizationtermisoftenincludedinthesemodels.Themotivationsaretwofold.First,itisreasonabletohy-pothesizethatonlyasmallnumberofmarkersarerelev-antintheresultingimaginggenomicsassociation.Thesparsitytermcanhelpidentifytheserelevantmarkers.Second,thesparsityconstraintcanreducethemodelcomplexityandsubsequentlyreducetheriskofoverfit-ting.Inadditiontoregressionmodels,anothercategoryofprominentmethodsdevelopedforbrainimaginggenom-icsstudiesarecorrelationmodels,suchassparsecanonic-alcorrelationanalysis(SCCA)[
21
-
23
]andparallel-inde-pendentcomponentanalysis(pICA)[
24
,
25
].Similartotheregressionmodeldiscussedearlier,thesparsityisencour-agedinthesecorrelationmodelstoreducemodelcom-plexityandtheriskofoverfitting,aswellasidentifyrel-evantbiomarkers.Overall,thisarticleisfocusedonthethreetypesoflearningproblemsasfollows.First,wewillshowthelimitationsoftheunivariateimaginggeneticsassociationanalysisandshowtheunivariatelearningap-proachesforcorrelationanalysis.Second,wewillpresenttheproblemofmultivariateimaginggeneticsassociationanalysisandsummarizethemainideaandmodellingingenetic-imagingassociationstudiesbasedonmultivariatemachinelearning.Third,wewillreviewmethodsthatareusedtopredictanoutcomeofinterestbycombiningbothimagingandgenomicsdata,andmethodsforjointassoci-ationanalysisandoutcomeprediction.Finally,someun-solvedproblemsingeneticimagingandfutureresearchdirectionsareprospected.
2Univariateanalysismethod
Thestatisticalanalysisofsingle-geneticvariablesusu-
Case-controlstudy-qualitative
trait
Univariateanalysismethod
Associationanalysisinimaginggenomics
Populationbased
study-qualitative
trait
Outcomeprediction
Multivariategenetic-univariateimagingregression
Multivariateanalysismethod
Multivariateimaging-univariategeneticregression
Multivariateregression
Sparsemulti-geneticmulti-imagingregression
Multivariatecorrelation
Regularizedsparsecanonicalcorrelationanalysis
M.L.Wangetal./MachineLearningforBrainImagingGenomicsMethods:AReview59
Chi-squaretestlogisticregression
Univariategenetic-univariateimaginganalysis
Analysisofvariancelinearregression
(Multi-genetics)Structuredsparselinearregression
(Longitudinal/Multimodalimaging)Sparsemulti-taskregression
Multivariategenetic-
multivariate
imaging
Fig.1Schematicoftopicscoveredinbrainimaginggenomics.Thegoalistopresentassociationanalysisinimaginggeneticsbasedonmachinelearning.
allyadoptsthePearson'schi-squaretestfortheexperi-mentalgroupandthecontrolgroupasthealleledetec-tionmethod.Thatis,toconfirmwhetherthelocusisas-sociatedwithageneticriskfactorbyanalysingwhethertherearestatisticaldifferencesbetweenthecorrespond-inggenomiclociofagroupofpatientswithvariousdis-easesandagroupofnormalcontrols.Imaginggeneticsanalysisbasedonunivariatestatisticalmethodscanuse
linearregressionandanalysisofvariancemodelsasallele
associationanalysismethods
[
26
].Inaddition,forthemul-tipleunivariatemodels,firstly,p×qlinearregressionmodels(yj=βjkxk,wherepisthegenefeaturedimen-sionandqistheimagingfeaturedimension)arefitted.Then,p×qnullhypotheses(H0:βjk=0)aretested.Fi-nally,thep-valuesaresortedtoselectthesmallerp-val-ues.Forexample,in2009,Potkinetal.[
27
]performedagenome-wideassociationstudy(GWAS)onpatients,nor-malcontrols,andimagingphenotypes.Thatis,theeffectofSNPsonquantitativephenotypesofbrainareascanbecalculatedbyageneralizedlinearmodel,whichiscon-structedbyimagingphenotypes,diseasediagnosisandgenedata.Theexpressionisasfollows:
Y=b0+b1SNP+b2APOEe4+b3gender+b4age+
b5diagnosis+b6SNP×diagnosis+?(1)
whereYdenotestheneuroimagingQT,birepresentsthecoefficientofeachvariable,andSNP×diagnosisrepresentstheinteractionrelationship.Thep-value
obtained
istheassociationresultbetweenSNPandQT[
27
].
Intheunivariateimaginggeneticsassociationanalysis,
accordingtodifferentscales[
28
],wesummarizeasfollows:forthegeneticlevel,itincludes1)candidategenetics/SNPs[
29
-
32
],2)relatedbiologicalfunctionscharacteristicpathways/networks[
33
-
35
],3)wholegenome[
27
,
36
-
39
].Forthebrainimaginglevel,itincludes1)individualregionsofinterest(ROI)[
27
,
29
,
33
,
36
],2)multipleROI[
30
,
34
,
37
],3)wholebrain[
31
,
32
,
35
,
38
,
39
].WhetheritistheassociationanalysisbetweencandidategeneticlocusSNPandneuroimaging[
40
](cerebrospinalfluid[
41
],cognitivescore[
42
],andanyotherQT),ortheassociationanalysisbetweenwholegenomeandneuroimagingoreventheassociationanalysisbetweenwholegenomeandsmallervoxel-wisebrainimaging,linearregressionandanalysisofvariancecansolvetheproblemsofimaginggeneticsassociationanalysisatdifferentscales.Inaddition,someresearchers
havereleasedrelevantstatisticalanalysissoftware,suchasPlink
[
43
].
GWASgeneticstatisticalanalysisneedstofindtheassociationwithdiseasephenotypesfrommillionsoreven
tensofmillionsofSNPs.AlthoughtheBonferronicorrec-
tioncanbeusedtostrictlycontrolthesignificance
[
44
,
45
],thisstrategywillleadtomanysmalleffectvariationsthatcannotpassthecorrectionlevel,andmultiplesuchsmalleffectvariationsmayacttogethertohaveagreatimpactonthetraits.Theapplicationofunivariateanalysismeth-odsinimaginggeneticshasamoreintuitiveexplanation,andcansimplyandquicklydetecttheassociationbetweenasingleSNPandasingleQT.However,duetothehigh-dimensionalcharacteristicsofdatavariables,alargenumberofmultiplecomparisonseventuallymakethestatisticaltestresultsnotsignificant,andtheabovetestmethodisbasedonastricthypothesis.Thatis,ge-neticlociorimagingcharacteristicvariablesarestatistic-
60
allyindependent,whiletheimportantinformationoftheassociationbetweenvariablesisignored.Therefore,forhigh-dimensionalfeatures,theunivariateapproachstillhassomelimitationsindealingwiththeproblemofima-ginggeneticsassociationanalysis.
3Multivariateanalysismethod
Followingtheunivariatevoxel-wisegenome-wideasso-ciationanalysis(vGWAS)[
39
],Hibaretal.[
46
,
47
]proposedamultivariatevoxel-wisegene-wideassociationstudy(vGe-neWAS),whichsolvestheproblemofvariablecollinear-itybyprincipalcomponentsregression(PCReg)toallSNPsinagenome.Specifically,principalcomponentana-lysis(PCA)wasfirstusedtoobtainthemutuallyortho-gonalfactorsthatmaximizethevarianceontheSNPre-gressionvariableset.Then,thestandardpartialF-test
wasusedontheseorthogonalfactors.Finally,following
therelatedworkproposedbySteinetal.
[
39
]in2010,thesamegeneticandbrainimagingdatasetwereusedtogroupSNPsanddetecttheassociationbetweengroupedSNPswithvoxel-wiseimaging.Experimentalresultsshowthatthismethodachievesbetterassociationperformanceandreducesthenumberofstatisticaltests.Therefore,inordertoenhancetheabilitytodetecttheassociationbetweengeneticsandquantitativetraits(QTs),somere-searchershaveusedmultivariatemethodstoaddresstheassociationofmulti-geneticormulti-locuscombinedef-fectsinimaginggenetics[
19
,
48
].Recently,researchonma-chinelearningbasedimaginggeneticshasattractedmuchattention,whichaimstoidentifytheassociationbetweengeneticsandimagingfeaturesbyusingregressionmodels.Wecanusedifferentcriteriatodividethesemethodsin-toregressionmodels(includingmultivariategenetic-uni-variateimagingregression,multivariateimaging-univari-ategeneticregression,andmultivariategenetic-multivari-ateimagingregression)andcorrelationmodels(i.e.,mul-tivariategenetic-multivariateimagingcorrelation).Inthenextsubsection,severalclassicandstate-of-the-artassoci-ationmodelswillbeintroducedbytheabovedivisionstrategy.
3.1Regressionmodels
3.1.1Multivariategenetic-univariateimagingreg-ression
Weusuallyuseasparseregularizedregressionmodel
torealizemultivariategenetic-univariateimagingregres-sion.Themainmotivationistwofold.First,assumingthatonlyafewmarkersareassociatedwithimaginggen-omics,sparsetermsassisttoidentifytheserelatedmark-
ers.Second,sparseconstraintscanreducethe
complexity
ofthemodelandtheriskofoverfitting.In[
49
,
50
],re-gressionmodelsbasedonL1normpenaltyconstraintshavebeensuccessfullyappliedtomultivariategeneticdataanalysis.TheyaimtoidentifysparseSNPlocithat
MachineIntelligenceResearch20(1),February2023
arehighlyassociatedwithspecificbrainregions.Thesemodelsprovideageneraltechnicalframeworktodealwiththesmallsampleregressionproblemofdetectingandidentifyinghigh-dimensionalgeneticSNPs.However,theconstraintsbasedontheL1normdonotfullycon-siderthestructuralrelationshipbetweenthefeaturevari-ables,thereforetheoptimalregressionresultscannotbeachievedintheory.Consideringthespatialstructurerela-tionshipbetweenSNPfeatures,Silveretal.[
51
-
53
]pro-posedthegroupsparsemodelorfusionsparsemodeltoselectSNPlociinthesamegrouporadjacentfeaturevariables,andthemodelsbasedongroupsparsityorfu-sionsparseareasfollows:
(2)
(3)
miwn∥y?Xw∥+λ√ji)w
miwn∥y?Xw∥+λ|wi?wj|
wherethesetwoequationsareutilizedforidentifyingasetofSNPsfromXandpredictingasingleimagingphenotypey.In(2),wjinthegroupsparsitytermrepresentsalltheSNPlocifeaturesbelongingtothegroupG(i),andthegoalistocontroltheselectedlocitoincludethecharacteristicsofclustering.Forexample,therewillbealinkagedisequilibrium(LD)effect
[
54
]betweengeneloci,thatis,SNPslinkedondifferentgeneswillappearinthesameLDblocknonrandomly.ThisprovidesdomainknowledgeforthefeatureselectionmodelbasedongroupsparsitysothatSNPsinthesameLDgroupcanbedetectedsimultaneously.In(3),thefusionLassotermcancontroltheweightcontributionofadjacentpositionfeatureswiandwjtobeassimilaraspossible,thatis,thefeaturevariablesselectedbythefusionLassotermhavespatialcontinuity.TheempiricalstudywasperformedonanADNIsample.
Inaddition,thereisnotonlyaflatspatialrelation-shipbetweenSNPloci,butalsoahierarchicalrelation-shipintheactualgenestructure.Forexample,inacer-tainpathway,theinteractionofspecificgenelocicanaf-fectproteinsynthesisandfunctionaltransformation,andsomeSNPlociunderthesamegenealsohavecertaincor-relations(suchasLD).Therefore,makingfulluseofthepriorknowledgeofthishierarchicalstructuretoperformtheimaginggeneticanalysiswilloftenreducetheerrorin
theregressionanalysisandlearnmoreexplanatoryfea-
turepatterns
[
55
-
57
],asshownin
.
Fig
2
.Asshown,themodelusesatree-guidedsparselearning(TGSL)methodtoidentifytheassociationbetweengenotypeandpheno-type.Whenconstructingatreestructure,theSNPlociareusedasleafnodes,theLDblockandthegeneblockareusedasintermediatenodes,andallgenesinthepath-wayareusedasthefinalrootnodes.Thestructuretreehasdlayersandeachlayerhasninodes.Thenodeofthe
Candidateset
Rootnode
IntervalnodesGenes
IntervalnodesLDblocks
SNPs
Leafnodes
Feature
d
Time
T
Pathway
M.L.Wangetal./MachineLearningforBrainImagingGenomicsMethods:AReview61
ImagingQT
SVR
prediction
model
Fig.2Tree-guidedsparseregressionmodel,whichaimstoidentifyasetofSNPsforpredictingasingleimagingpheno-type[
55
-
57
].
i-thlayeris{G,···,G,···,Gi},andthetree-guidedsparseregressionmodelisasfollows:
(4)
miwn∥y?Xw∥+λα∥wG∥2
whichalsoaimstoidentifyasetofSNPsforpredictingasingleimagingphenotypey.αistheweightofanynode
Gpredefinedaccordingtopriorknowledge.wGisthe
weightofanynodeGinthelearnedtreestructure.Itisworthnotingthatwhentheweightofanodeiszero,itschildnodesareallzero,thatis,allthefeaturesofthesubtreehavenothingtodowiththeregressiontaskandarenotselected.ComparedwiththetraditionalLassomethod,theSNPsobtainedbytheoptimizationofthemodelhavesmallererrorsinpredictingthegraymattervolumeofthebrain,andtheseSNPlociassociatedwithMRIbrainregionshaveahierarchicalclustering.TheempiricalstudywasperformedonanADNIsampletoidentifysparseSNPpatternsattheblockleveltobetterguidethebiologicalinterpretation.
3.1.2Multivariateimaging-univariategeneticreg-ression
Inresearchonmachinelearningbasedimaginggenet-ics,mostoftheworkshavefocusedondiscoveringanddetectingmultivariateSNPlociassociatedwithimagingphenotypes.However,fewstudieshaveexploredhowSNPvalueschangewhenphenotypicmeasurementvari-ableschange,thatis,usingmultivariateimagingtore-gressunivariategeneticfeatures.Forexample,Shenetal.[
38
]proposedatask-relatedtimeseriesmultivariatesparseregressionmodelbasedonthegroupstructurein-formationbetweenpredictionvariables.Themodelisasfollows:
「
TdlT
(5)
miW
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省大理州2025-2026學(xué)年九年級上學(xué)期物理期末統(tǒng)一測試試題(含答案)
- 2026年上海市楊浦區(qū)初三上學(xué)期一模數(shù)學(xué)試卷和參考答案
- 化工儀表知識課件
- 化工儀表安全培訓(xùn)課件
- 飛機(jī)質(zhì)量控制培訓(xùn)課件
- 城建集團(tuán)下屬公司招15人補(bǔ)充備考考試題庫及答案解析
- 2026山東聊城市市屬事業(yè)單位招聘初級綜合類崗位人員87人備考考試試題及答案解析
- 2026海南安??毓捎邢挢?zé)任公司招聘11人考試備考試題及答案解析
- 2026年池州青陽縣中醫(yī)醫(yī)院公開招聘勞務(wù)派遣工作人員1名備考考試試題及答案解析
- 2026年中國郵政儲蓄銀行股份有限公司普洱市分行招聘見習(xí)人員(10人)考試參考題庫及答案解析
- 小學(xué)三年級口算題大全1000道題及答案(A4打?。?/a>
- 建筑工程檢測設(shè)備配置清單及要求
- CAE入門資料:有限元分析
- 加工中心操作工初級工考試試卷與答案
- 新生兒圍生期感染護(hù)理查房
- 內(nèi)蒙古呼和浩特市2025-2026學(xué)年高三上學(xué)期第一次質(zhì)量監(jiān)測 化學(xué)試卷
- 丈夫出軌婚內(nèi)協(xié)議書范本
- 厚型防火涂料施工規(guī)范及操作流程
- 婚姻家庭矛盾糾紛調(diào)解
- 中性粒細(xì)胞缺乏癥診療與管理體系
- 醫(yī)院行政管理體系介紹
評論
0/150
提交評論