基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法_第1頁(yè)
基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法_第2頁(yè)
基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法_第3頁(yè)
基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法_第4頁(yè)
基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法

摘要:

在醫(yī)療領(lǐng)域,命名實(shí)體識(shí)別是一項(xiàng)重要的自然語(yǔ)言處理技術(shù)。它可以幫助對(duì)醫(yī)療文本進(jìn)行分類、信息抽取和知識(shí)挖掘等任務(wù)。但是,命名實(shí)體識(shí)別的準(zhǔn)確性往往需要大量的標(biāo)注數(shù)據(jù)支持,而針對(duì)醫(yī)療文本的標(biāo)注數(shù)據(jù)很難獲得,因此如何利用少量標(biāo)注數(shù)據(jù)提高醫(yī)療命名實(shí)體識(shí)別的準(zhǔn)確性成為了一個(gè)熱門研究課題。

本文提出了一種基于少量標(biāo)注數(shù)據(jù)的醫(yī)療命名實(shí)體識(shí)別方法。該方法首先利用無(wú)監(jiān)督學(xué)習(xí)進(jìn)行特征選擇,然后結(jié)合遷移學(xué)習(xí)和半監(jiān)督學(xué)習(xí),利用一部分標(biāo)注數(shù)據(jù)和大量未標(biāo)注數(shù)據(jù)進(jìn)行模型訓(xùn)練。實(shí)驗(yàn)結(jié)果表明,該方法可以在少量標(biāo)注數(shù)據(jù)的情況下,提高醫(yī)療命名實(shí)體識(shí)別的準(zhǔn)確率和召回率,同時(shí)也具有較好的泛化性能。

關(guān)鍵詞:命名實(shí)體識(shí)別;少量標(biāo)注數(shù)據(jù);醫(yī)療文本;無(wú)監(jiān)督學(xué)習(xí);遷移學(xué)習(xí);半監(jiān)督學(xué)習(xí)

Abstract:

Namedentityrecognitionisanimportantnaturallanguageprocessingtechnologyinthemedicalfield.Itcanaidinclassification,informationextraction,andknowledgeminingofmedicaltexts.However,theaccuracyofnamedentityrecognitionoftenrequiresalargeamountofannotateddata,andobtaininglabeleddataformedicaltextsischallenging.Therefore,howtoimprovetheaccuracyofmedicalnamedentityrecognitionusingasmallamountoflabeleddatahasbecomeapopularresearchtopic.

Thispaperproposesamethodformedicalnamedentityrecognitionbasedonasmallamountofannotateddata.Themethodfirstusesunsupervisedlearningforfeatureselection,andthencombinestransferlearningandsemi-supervisedlearningtotrainthemodelusingasmallamountoflabeleddataandalargeamountofunlabeleddata.Theexperimentalresultsshowthatthismethodcanimprovetheaccuracyandrecallofmedicalnamedentityrecognitionwithfewlabeleddata,anditalsohasgoodgeneralizationperformance.

Keywords:Namedentityrecognition;Smallamountoflabeleddata;Medicaltext;Unsupervisedlearning;Transferlearning;Semi-supervisedlearninNamedentityrecognition(NER)isanimportanttaskinnaturallanguageprocessingandisespeciallyrelevantinthemedicalfield.However,itrequiresalargeamountoflabeleddataforsupervisedlearning,whichcanbetime-consumingandexpensivetoobtain.Therefore,developingmethodsthatcanimprovetheperformanceofNERwithlimitedlabeleddataishighlydesirable.

Transferlearningandsemi-supervisedlearninghavebeenshowntobeeffectiveapproachesinvarioustaskswherelabeleddataisscarce.Transferlearningenablesthemodeltoleverageknowledgefromrelatedtasks,allowingittoperformbetterwithlimitedlabeleddata.Semi-supervisedlearning,ontheotherhand,utilizesalargeamountofunlabeleddatatoimprovethemodel'sperformance.

Inthisstudy,weproposeamethodthatcombinestransferlearningandsemi-supervisedlearningtoimprovetheaccuracyandrecallofmedicalnamedentityrecognitionwithlimitedlabeleddata.Specifically,wefirstpre-trainaBERT-basedmodelonalargecorpusofunlabeledmedicaltextusingunsupervisedlearning.Wethenfine-tunethepre-trainedmodelonasmallamountoflabeleddatausingtransferlearning.Finally,weperformsemi-supervisedlearningonthefine-tunedmodelusingthelargeamountofunlabeleddata,whichfurtherimprovesitsperformance.

Ourexperimentalresultsdemonstratethatourproposedmethodachievesbetterperformancethantraditionalsupervisedlearning,transferlearning,andsemi-supervisedlearningapproacheswhenthelabeleddataislimited.Furthermore,themodelshowsgoodgeneralizationperformanceonunseenmedicaltext.

Inconclusion,ourproposedmethodcaneffectivelyimprovetheperformanceofmedicalnamedentityrecognitionwithlimitedlabeleddata.Thishasimportantimplicationsformedicalresearch,asitenablestheextractionofmoreaccurateandcomprehensiveinformationfrommedicaltextThereisnodoubtthattheproposedmethodformedicalnamedentityrecognitionhassignificantimplicationsforthefieldofmedicalresearch.Withtheabilitytoextractaccurateandcomprehensiveinformationfrommedicaltext,researcherswillbeabletomoreeffectivelyandefficientlyidentifyspecificmedicalinformationinlargedatasets.Thiswillleadtonewdiscoveriesandinsightsthathavethepotentialtoimprovepatientoutcomesandmedicaltreatments.

Moreover,theproposedmethodhasthepotentialtoaddressasignificantchallengeinthefieldofmedicalnaturallanguageprocessing–thelimitedavailabilityoflabeleddata.Medicaltextisoftencomplexanddifficulttolabel,andtheprocessofmanuallyannotatinglargedatasetsistime-consumingandcostly.Byeffectivelyutilizinglimitedlabeleddata,theproposedmethodenablesmedicalresearcherstoleveragethewealthofinformationavailableinmedicaltexts.

Movingforward,itwillbeimportanttocontinuetorefineandoptimizetheproposedmethodformedicalnamedentityrecognition.Asmedicalresearchcontinuestogeneratevastamountsofcomplexdata,itwillbeessentialtodevelopincreasinglysophisticatednaturallanguageprocessingtoolstoparseandanalyzethisdata.Withfurtherdevelopment,theproposedmethodhasthepotentialtobecomeavaluabletoolformedicalresearchersseekingtogaininsightsfrommedicaltextdataTofurtherrefineandoptimizetheproposedmethodformedicalnamedentityrecognition,severalstepscanbetaken.Firstly,thealgorithmcanbetrainedonlargerandmorediversedatasetstoenhanceitsaccuracyandgeneralizability.Thiswillrequirethecreationofannotateddatasetsthatencompassawidervarietyofmedicalterminologiesandhealthcarescenarios.

Secondly,thealgorithmcanbeimprovedthroughtheincorporationofmoresophisticatedmachinelearningtechniques,suchasdeeplearningmodels.Thesemodelscanutilizelargerneuralnetworkstocapturemorecomplexrelationshipsbetweenmedicaltermsandentities,yieldinghigheraccuracyratesfornamedentityrecognition.

Thirdly,theproposedmethodcanbeextendedtootherlanguagesandhealthcaredomains.Theglobalnatureofmedicalresearchdemandsthatsuchtoolsbedevelopedformultiplelanguagesinordertofacilitatetheexchangeofknowledgebetweenresearchersaroundtheworld.Additionally,themethodcanbeadaptedtospecifichealthcaredomains,suchasradiologyorcardiology,toimproveitsperformanceonspecializedmedicaltexts.

Finally,thedeploymentoftheproposedmethodcanbeoptimizedforpracticalusecases.Thisincludesdevelopinguser-friendlyinterfaces,creatingintegrationwithexistingmedicaldatabasesandsoftware

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論