東南大學(xué)數(shù)字通信試卷(附答案)-2023修改整理_第1頁
東南大學(xué)數(shù)字通信試卷(附答案)-2023修改整理_第2頁
東南大學(xué)數(shù)字通信試卷(附答案)-2023修改整理_第3頁
東南大學(xué)數(shù)字通信試卷(附答案)-2023修改整理_第4頁
東南大學(xué)數(shù)字通信試卷(附答案)-2023修改整理_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

千里之行,始于足下讓知識帶有溫度。第第2頁/共2頁精品文檔推薦東南大學(xué)數(shù)字通信試卷(附答案)東南高??荚嚲?A卷)

課程名稱數(shù)字通信考試學(xué)期04-05-2得分

適用專業(yè)無線電工程系考試形式閉卷考試時光長度120分鐘共頁

SectionA:TrueorFalse(15%)

1.1.Whentheperiodisexactly2m,thePNsequenceiscalleda

maximal-length-sequenceorsimplym-sequence.

2.2.Foraperiodofthemaximal-lengthsequence,theautocorrelation

functionissimilartothatofarandombinarywave.

3.3.Forslow-frequencyhopping,symbolrateRsofMFSKsignalisan

integermultipleofthehoprateRh.Thatis,thecarrierfrequencywillchangeorhopseveraltimesduringthetransmissionofonesymbol.4.4.Frequencydiversitycanbedonebychoosingafrequencyspacing

equaltoorlessthanthecoherencebandwidthofthechannel.

5.5.Themutualinformationofachannelthereforedependsnotonlyon

thechannelbutalsoonthewayinwhichthechannelused.

6.6.Shannon’ssecondtheoremspecifiesthechannelcapacityCasa

fundamentallimitontherateatwhichthetransmissionofreliableerror-freemessagescantakeplaceoveradiscretememorylesschannelandhowtoconstructagoodcode.

7.7.Thesyndromedependsnotonlyontheerrorpattern,butalsoon

thetransmittedcodeword.

8.8.Anypairofprimitivepolynomialsofdegreemwhosecorresponding

shiftregistersgeneratem-sequencesofperiod2m-1canbeusedtogenerateaGoldsequence.

9.9.AnysourcecodesatisfiestheKraft-McMillaninequalitycanbea

prefixcode.

10.10.Letadiscretememorylesssourcewithanalphabet?haveentropy

H?andproducesymbolsonceeverysTseconds.Letadiscrete()

memorylesschannelhavecapacityandbeusedonceevery

CcT

seconds.Then,if

()?

sc

HC

TT,thereexistsacodingschemeforwhich

thesourceoutputcanbetransmittedoverthechannelandbereconstructedwithanarbitrarilysmallprobabilityoferror.SectionB:Fillintheblanks(35%)

1.1.Thetwocommonlyusedtypesofspread-spectrummodulation:

and.

2.2.Apseudo-noise(PN)sequenceisaperiodicbinarysequencewitha

waveformthatisusuallygeneratedbymeansofa

.

3.3.Dueto,wirelesscommunicationisnolonger

idealizedAWGNchannelmodel.

4.4.Therearethefollowingdiversitytechniquesinourdiscussion,

diversity,diversity,diversity.

5.5.Threemajorsourcesofdegradationinwirelesscommunications

are

,,and;thelattertwoarebyproductsofmultipath.

6.6.TheinformationcapacityofacontinuouschannelofbandwidthB

hertz,perturbedbyadditivewhiteGaussiannoiseofpowerspectraldensityN0/2andlimitedinbandwidthtoB,isgivenby

.

7.7.Theorsyndrome)isdefined

as:.

8.8.ForLinearBlockCodes,CorrectallerrorpatternsofHamming

weightw(e)≤t2,ifandonlyif.

9.9.TCMCombineandasasingleentityto

attainamoreeffectiveutilizationoftheavailable

and.

10.10.InaDS/BPSKsystem,thefeedbackshiftregisterusedto

generatethePNsequencehaslengthm=19,thantheprocessinggainis.

11.11.LetXrepresenttheoutcomeofasinglerollofafairdie(骰子).

TheentropyofXis.

12.12.Avoice-gradechannelofthetelephonenetworkhasabandwidth

of3.4kHz,theinformationcapacityofthetelephonechannelforasignal-to-noiseratioof30dBis,theminimumsignal-to-noiseratiorequiredtosupportinformation

transmissionthroughthetelephonechannelattherateof9,600b/sis.

13.13.Foram-sequencegeneratedbyalinearfeedbackshiftregisterof

length5,thetotalnumberofrunsis,numberoflength-tworunsis,theautocorrelationR(j)=(j≠0).

14.14.Ifthecoherentbandwidthofthechannelissmallcomparedtothe

messagebandwidth,thefadingissaidtobe.Ifthecoherencetimeofthechannelislargecomparedtothedurationofthesignalduration,thefadingissaidtobe.

15.15.Asourceemitsoneoffivesymbolswithprobabilities1/2,1/4,1/8,1/16,1/16,respectively.Thesuccessivesymbolsemittedbythesourcearestatisticallyindependent.Theentropyofthesourceis01234,,

sandssss.Theaveragecode-wordlengthforanydistortionlesssourceencodingschemeforthissourceisboundedas.

16.16.Forafinitevarianceσ2

,therandomvariablehasthelargestdifferentialentropyattainablebyanyrandomvariable,andtheentropyisuniquelydeterminedbythe.

17.17.SetpartitioningdesignpartitionstheM-aryconstellationof

interestsuccessivelyandhasprogressivelylargerincreasing

betweentheirrespectivesignalpoints.18.18.codeandcodehaveanerror

performancewithinahair’sbreadthofShannon’stheoreticallimitonchannelcapacityinaphysicallyrealizablefashion.

19.19.Whenaninfinitenumberofdecodingerrorsarecausedbyafinite

numberoftransmissionerrors,theconvolutionalcodeiscalleda.

SectionC:Problems(50%)

1.Aradiolinkusesapairof2mdishantennaswithanefficiencyof70percenteach,astransmittingandreceivingantennas.Otherspecificationsofthelinkare:

Transmittedpower=2dBW(notincludethepowergainofantenna)Carrierfrequency=12GHz

Distanceofthereceiverformthetransmitter=200mCalculate(a)thefree-spaceloss,

(b)thepowergainofeachantenna,

(c)thereceivedpowerindBW.

2.Acomputerexecutesfourinstructionsthataredesignatedbythecodewords(00,01,10,11).Assumingthattheinstructionsareusedindependentlywithprobabilities(1/2,1/8,1/8,1/4).

(a)(a)ConstructaHuffmancodefortheinstructions.

(b)(b)CalculatethepercentagebywhichthenumberofbitsusedfortheinstructionsmaybereducedbytheuseofaHuffmancode.

3.Considerthe(15,8)cycliccodedefinedbythegeneratorpolynomial

37()1gXXXX=+++

(a)(a)Developtheencoderforthiscode.

(b)(b)Getthegeneratormatrixandtheparity-checkmatrix.

(c)(c)Constructasystematiccodewordforthemessagesequence10110011.

(d)(d)Thereceivedwordis110001000000001,determinethesyndromepolynomials(X)forthisreceivedword.

4.Considertherater=1/3,constraintlengthK=3convolutionalencoder.Thegeneratorsequencestheencoderareasfollows:

(1)(1,0,0)g=,

,(2)(1,0,1)g=(3)

(1,1,1)g=(a)(a)Drawtheblockdiagramoftheencoder.(b)(b)Constructthecodetree

(c)(c)Constructthesignal-flowgraphandobtaintheinput-outputstateequations.

(d)(d)Determinetheencoderoutputproducedbythemessagesequence10111….

(e)(e)Thereceivedsequenceis110,001,101,110,000,011.UsetheViterbi

algorithmtocomputethedecodedsequence.答案

SectionA:TrueorFalse(每題1.5分,共15分)

11.1.Whentheperiodisexactly2m

,thePNsequenceiscalleda

maximal-length-sequenceorsimplym-sequence.(F)

12.2.Foraperiodofthemaximal-lengthsequence,theautocorrelation

functionissimilartothatofarandombinarywave.(T)

13.3.Forslow-frequencyhopping,symbolrateRsofMFSKsignalisan

integermultipleofthehoprateRh.Thatis,thecarrierfrequencywillchangeorhopseveraltimesduringthetransmissionofonesymbol.(F)14.4.Frequencydiversitycanbedonebychoosingafrequencyspacing

equaltoorlessthanthecoherencebandwidthofthechannel.(F)15.5.Themutualinformationofachannelthereforedependsnotonlyon

thechannelbutalsoonthewayinwhichthechannelused.(T)16.6.Shannon’ssecondtheoremspecifiesthechannelcapacityCasa

fundamentallimitontherateatwhichthetransmissionofreliableerror-freemessagescantakeplaceoveradiscretememorylesschannelandhowtoconstructagoodcode.(F)

17.7.Thesyndromedependsnotonlyontheerrorpattern,butalsoon

thetransmittedcodeword.(F)

18.8.Anypairofprimitivepolynomialsofdegreemwhosecorresponding

shiftregistersgeneratem-sequencesofperiod2m-1canbeusedtogenerateaGoldsequence.(F)

19.9.AnysourcecodesatisfiestheKraft-McMillaninequalitycanbea

prefixcode.(F)

20.10.Letadiscretememorylesssourcewithanalphabet?have

entropy()H?andproducesymbolsonceeverysTseconds.Letadiscretememorylesschannelhavecapacityandbeusedonceeveryseconds.Then,if

CcT()sc

HTTC

?≥,thereexistsacodingschemeforwhichthesourceoutputcanbetransmittedoverthechannelandbereconstructedwithanarbitrarilysmallprobabilityoferror.(F)

SectionB:Fillintheblanks(每空1分,共35分)

20.1.Thetwocommonlyusedtypesofspread-spectrummodulation:

directsequenceandfrequencyhopping.

21.2.Apseudo-noise(PN)sequenceisaperiodicbinarysequencewitha

noiselikewaveformthatisusuallygeneratedbymeansofafeedbackshiftregister.

22.3.Duetomultipath,wirelesscommunicationisnolongeridealized

AWGNchannelmodel.

23.4.Therearethefollowingdiversitytechniquesinourdiscussion,

Frequencydiversity,Timediversity,Spacediversity.

24.5.Threemajorsourcesofdegradationinwirelesscommunications

areco-channelinterference,fading,anddelayspread;thelattertwoarebyproductsofmultipath.

25.6.TheinformationcapacityofacontinuouschannelofbandwidthB

hertz,perturbedbyadditivewhiteGaussiannoiseofpowerspectraldensityN0/2andlimitedinbandwidthtoB,isgivenby

20log(1)bitspersecond=+P

CBNB.

26.7.Theerror-syndromevector(orsyndrome)isdefinedas:s=rHT

27.8.ForLinearBlockCodes,CorrectallerrorpatternsofHamming

weightw(e)≤t2,ifandonlyifdmin≥2t2+1.

28.9.TCMCombinecodingandmodulationasasingleentitytoattaina

moreeffectiveutilizationoftheavailablebandwidthandpower.

29.10.InaDS/BPSKsystem,thefeedbackshiftregisterusedto

generatethePNsequencehaslengthm=19,thantheprocessinggainis57dB.

30.11.LetXrepresenttheoutcomeofasinglerollofafairdie(骰子).

TheentropyofXislog2(6)=2.586bits/symbol.

31.12.Avoice-gradechannelofthetelephonenetworkhasabandwidth

of3.4kHz,theinformationcapacityofthetelephonechannelforasignal-to-noiseratioof30dBis33.9kbits/second,theminimumsignal-to-noiseratiorequiredtosupportinformationtransmissionthroughthetelephonechannelattherateof9,600b/sis7.8dB.32.13.Foram-sequencegeneratedbyalinearfeedbackshiftregisterof

length5,thetotalnumberofrunsis16,numberoflength-tworunsis4,theautocorrelationR(j)=-1/31(j≠0).

33.14.Ifthecoherentbandwidthofthechannelissmallcomparedtothe

messagebandwidth,thefadingissaidtobefrequencyselective.Ifthecoherencetimeofthechannelislargecomparedtothedurationofthesignalduration,thefadingissaidtobetimenonselectiveortimeflat.34.15.Asourceemitsoneoffivesymbolswithprobabilities1/2,1/4,1/8,1/16,1/16,respectively.Thesuccessive

symbolsemittedbythesourcearestatisticallyindependent.Theentropyofthesourceis15/8=1.875bits/symbol01234,,sand

ssss.Theaveragecode-wordlengthforanydistortionlesssourceencodingschemeforthissourceisboundedas?≥()LH.

35.16.Forafinitevarianceσ2,theGuassianrandomvariablehasthe

largestdifferentialentropyattainablebyanyrandomvariable,andtheentropyisuniquelydeterminedbythevarianceofX.

36.17.SetpartitioningdesignpartitionstheM-aryconstellationof

interestsuccessivelyandhasprogressivelylargerincreasingminimumEuclideandistancebetweentheirrespectivesignalpoints.

37.18.TurbocodesandLow-densityparity-checkcodeshaveanerror

performancewithinahair’sbreadthofShannon’stheoreticallimitonchannelcapacityinaphysicallyrealizablefashion.

38.19.Whenaninfinitenumberofdecodingerrorsarecausedbyafinite

numberoftransmissionerrors,theconvolutionalcodeiscalledacatastrophiccode.

SectionC:Problems

1.Aradiolinkusesapairof2mdishantennaswithanefficiencyof70percenteach,astransmittingandreceivingantennas.Otherspecificationsofthelinkare:

Transmittedpower=2dBW(notincludethepowergainofantenna)Carrierfrequency=12GHz

Distanceofthereceiverformthetransmitter=200mCalculate(a)thefree-spaceloss,

(b)thepowergainofeachantenna,

(c)thereceivedpowerindBW.(本題10分)

Solution:

(a)Free-spaceloss2

1010log4λπ??

=????

freespaceLd

8910310/12/1020log1004200π??

×==??××??

dB?

(b)Thepowergainofeachantennais1010102

410log10log10logπλ××??

==????

trAGG()102

8940.710log310/12/1046.46ππ??

×××??=??×??

=dB

(c)Thereceivedpower=transmittedpower+Gt+Gr+free-spaceloss=2+46.46+46.46+(-100)=-5.08dBW

2.Acomputerexecutesfourinstructionsthataredesignatedbythecode

words(00,01,10,11).Assumingthattheinstructionsareusedindependentlywithprobabilities(1/2,1/8,1/8,1/4).

(c)(a)ConstructaHuffmancodefortheinstructions.

(d)(b)Calculatethepercentagebywhichthenumberofbitsusedforthe

instructionsmaybereducedbytheuseofaHuffmancode.

(本題10分)

Solution:

(a)Aslowaspossible

Ashighaspossible

ComputercodeProbabilityHuffmanCode

001/21

111/401

000

011/8

101/8001

(e)(c)Thenumberofbitsusedfortheconstructionsbasedonthe

computercode,inaprobabilisticsense,isequalto

3.Considerthe(15,8)cycliccodedefinedbythegeneratorpolynomial

37()1gXXXX=+++842()1hXXXXX(++++)

=(e)(a)Developtheencoderforthiscode.

(f)(b)Getthegeneratormatrixandtheparity-checkmatrix.

(g)(c)Constructasystematiccodewordforthemessagesequence10110011.

(h)(d)Thereceivedwordis110001000000001,determinethesyndromepolynomials(X)forthisreceivedword.(本題15分)Solution:(a)

(b)generatormatrix

37248223533464

4

5

7

55686679177810()1()()()()()()()=+++=+++=+++=+++=+++=+++=+++=+++gXXXXXgXXXXX91011

12314

XgXXXXXXgXXXXXXgXXXXX

XgXXXXXXgXXXXXXgXXXXX

110100010000000011010001000000001101000100000000110100010000000011010001000000001101000100000000110100010000000011010001?????

????

??

?′=???

???????????G1101000100000000110100010000000011010001000000001101000100001101110000010000110111000001001110011000000101010001000

1?????

????

??

?=???

???????????

GParity-checkmatrix

81467891578910

1

2

6

8

9

10

1113791011()1()()()XhXXXXXXhXXXXXXXhXXXXXX

XhXXXXXX????=++++=++++=++++=++++

121481011121315911121141610121314

()()()3XhXXXXXXXhXXXXXXXhXXXXXX???=++++=++++=++++

100010111000000010001011100000001000101110000'0

00100010111000000010001011100000001000101110000000100010111??????????=????????????H1000000100010110100000110011100010000011001110

0010001011100000001000101110000000100010111000000010001011

1??????????=???????????

?

H(c)F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論