2022-2023學(xué)年甘肅省甘南重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第1頁
2022-2023學(xué)年甘肅省甘南重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第2頁
2022-2023學(xué)年甘肅省甘南重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第3頁
2022-2023學(xué)年甘肅省甘南重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第4頁
2022-2023學(xué)年甘肅省甘南重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在矩形ABCD中,AB=,AD=2,以點(diǎn)A為圓心,AD的長為半徑的圓交BC邊于點(diǎn)E,則圖中陰影部分的面積為()A. B. C. D.2.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.3.中國在第二十三屆冬奧會閉幕式上奉獻(xiàn)了《2022相約北京》的文藝表演,會后表演視頻在網(wǎng)絡(luò)上推出,即刻轉(zhuǎn)發(fā)量就超過810000這個數(shù)用科學(xué)記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1044.下列運(yùn)算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x45.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.66.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長為()A. B. C. D.7.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.8.tan30°的值為()A.12 B.32 C.39.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.10.如圖所示的幾何體,它的左視圖是()A. B. C. D.11.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點(diǎn),P為弧BC上一動點(diǎn)(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.4312.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后頂點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為.14.已知點(diǎn),在二次函數(shù)的圖象上,若,則__________.(填“”“”“”)15.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點(diǎn)O;(2)以點(diǎn)O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據(jù)是__________________________________.16.如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____.17.如圖,△ABC中,AB=6,AC=4,AD、AE分別是其角平分線和中線,過點(diǎn)C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為_____.18.可燃冰是一種新型能源,它的密度很小,可燃冰的質(zhì)量僅為.數(shù)字0.00092用科學(xué)記數(shù)法表示是__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把△ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.20.(6分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.21.(6分)如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動點(diǎn).(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);(2)若點(diǎn)P在第二象限內(nèi),過點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動到什么位置時,線段PE最長?此時PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.22.(8分)已知關(guān)于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實(shí)數(shù)根x1,x1.求實(shí)數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實(shí)數(shù)k的值.23.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點(diǎn)A(3,0)、B(0,-3),點(diǎn)P是直線AB上的動點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.分別求出直線AB和這條拋物線的解析式.若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長時,求△ABM的面積.是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.24.(10分)關(guān)于的一元二次方程.求證:方程總有兩個實(shí)數(shù)根;若方程有一根小于1,求的取值范圍.25.(10分)計算:2sin30°﹣(π﹣)0+|﹣1|+()﹣126.(12分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.27.(12分)清朝數(shù)學(xué)家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實(shí)田四畝七分;又山田五畝,場地三畝,共折實(shí)田五畝五分,問每畝山田折實(shí)田多少,每畝場地折實(shí)田多少?譯文為:若有山田3畝,場地6畝,其產(chǎn)糧相當(dāng)于實(shí)田4.7畝;若有山田5畝,場地3畝,其產(chǎn)糧相當(dāng)于實(shí)田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當(dāng)于實(shí)田多少畝?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

先利用三角函數(shù)求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進(jìn)行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點(diǎn)睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補(bǔ)法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.2、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.3、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】810000=8.1×1.

故選B.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、D【解析】

根據(jù)合并同類項(xiàng)、單項(xiàng)式的乘法、積的乘方和單項(xiàng)式的乘法逐項(xiàng)計算,結(jié)合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)、單項(xiàng)式的乘法、積的乘方和單項(xiàng)式的乘法,熟練掌握它們的運(yùn)算法則是解答本題的關(guān)鍵.5、B【解析】

根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點(diǎn)睛】考查了二次函數(shù)的最值,解題時,利用配方法和非負(fù)數(shù)的性質(zhì)求得xy的最大值.6、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點(diǎn):1.切線的性質(zhì);3.矩形的性質(zhì).7、C【解析】

根據(jù)中心對稱圖形,軸對稱圖形的定義進(jìn)行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項(xiàng)錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項(xiàng)錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項(xiàng)正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項(xiàng)錯誤.故選C.【點(diǎn)睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關(guān)鍵是根據(jù)圖形自身的對稱性進(jìn)行判斷.8、D【解析】

直接利用特殊角的三角函數(shù)值求解即可.【詳解】tan30°=33,故選:D【點(diǎn)睛】本題考查特殊角的三角函數(shù)的值的求法,熟記特殊的三角函數(shù)值是解題的關(guān)鍵.9、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項(xiàng)錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.10、A【解析】

從左面觀察幾何體,能夠看到的線用實(shí)線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,

故選:A.【點(diǎn)睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關(guān)鍵.11、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點(diǎn)睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.12、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項(xiàng)得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點(diǎn)睛”本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(10,3)【解析】

根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設(shè)EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點(diǎn)E的坐標(biāo).【詳解】∵四邊形AOCD為矩形,D的坐標(biāo)為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點(diǎn)F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設(shè)EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點(diǎn)E的坐標(biāo)為(10,3).14、【解析】拋物線的對稱軸為:x=1,∴當(dāng)x>1時,y隨x的增大而增大.∴若x1>x2>1

時,y1>y2

.故答案為>15、正方形的對角線相等且互相垂直平分;點(diǎn)到圓心的距離等于圓的半徑的點(diǎn)在這個圓上;四邊形的四個頂點(diǎn)在同一個圓上,這個圓叫四邊形的外接圓.【解析】

利用正方形的性質(zhì)得到OA=OB=OC=OD,則以點(diǎn)O為圓心,OA長為半徑作⊙O,點(diǎn)B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點(diǎn)到圓心的距離等于圓的半徑的點(diǎn)在這個圓上;四邊形的四個頂點(diǎn)在同一個圓上,這個圓叫四邊形的外接圓.【點(diǎn)睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.16、(2,3)【解析】

作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點(diǎn)A、B的坐標(biāo)分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點(diǎn)A′的坐標(biāo)為(2,3).故答案為(2,3).【點(diǎn)睛】此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點(diǎn)的坐標(biāo)的確定.解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.17、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,則BG=AB?AG=6?4=2.又∵BE=CE,∴EF是△BCG的中位線,∴EF=BG=1.故答案是:1.18、9.2×10﹣1.【解析】

根據(jù)科學(xué)記數(shù)法的正確表示為,由題意可得0.00092用科學(xué)記數(shù)法表示是9.2×10﹣1.【詳解】根據(jù)科學(xué)記數(shù)法的正確表示形式可得:0.00092用科學(xué)記數(shù)法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【點(diǎn)睛】本題主要考查科學(xué)記數(shù)法的正確表現(xiàn)形式,解決本題的關(guān)鍵是要熟練掌握科學(xué)記數(shù)法的正確表現(xiàn)形式.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進(jìn)而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.方法2、先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,即可.【詳解】解:(1)∵點(diǎn)P,N是BC,CD的中點(diǎn),∴PN∥BD,PN=BD,∵點(diǎn)P,M是CD,DE的中點(diǎn),∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時,△PMN的面積最大,∴DE∥BC且DE在頂點(diǎn)A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時,△PMN面積最大,∴點(diǎn)D在BA的延長線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【點(diǎn)睛】本題考查旋轉(zhuǎn)中的三角形,關(guān)鍵在于對三角形的所有知識點(diǎn)熟練掌握.20、(1)作圖見解析;(2)證明書見解析.【解析】

(1)以點(diǎn)N為圓心,以MQ長度為半徑畫弧,以點(diǎn)M為圓心,以NQ長度為半徑畫弧,兩弧交于一點(diǎn)F,則△MNF為所畫三角形.(2)延長DA至E,使得AE=CB,連結(jié)CE.證明△EAC≌△BCA,得:∠B=∠E,AB=CE,根據(jù)等量代換可以求得答案.【詳解】解:(1)如圖1,以N為圓心,以MQ為半徑畫圓弧;以M為圓心,以NQ為半徑畫圓??;兩圓弧的交點(diǎn)即為所求.(2)如圖,延長DA至E,使得AE=CB,連結(jié)CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考點(diǎn):1.尺規(guī)作圖;2.全等三角形的判定和性質(zhì).21、(1)y=-x2-2x+1,C(1,0)(2)當(dāng)t=-2時,線段PE的長度有最大值1,此時P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點(diǎn),∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設(shè)D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當(dāng)t=-2時,線段PE的長度有最大值1,此時P(-2,6).(2)存在.如圖2,過N點(diǎn)作NH⊥x軸于點(diǎn)H.設(shè)OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點(diǎn),∴MH=2-m.當(dāng)△MON為等腰三角形時:①若MN=ON,則H為底邊OM的中點(diǎn),∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡得m2-1m+6=0,∵△=-8<0,∴此時不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點(diǎn)C的坐標(biāo).(2)求出線段PE長度的表達(dá)式,設(shè)D點(diǎn)橫坐標(biāo)為t,則可以將PE表示為關(guān)于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長度的最大值.(2)根據(jù)等腰三角形的性質(zhì)和勾股定理,將直線l的存在性問題轉(zhuǎn)化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應(yīng)Q點(diǎn)的坐標(biāo).“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.22、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實(shí)數(shù)k的取值范圍;(2)由根與系數(shù)的關(guān)系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實(shí)數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實(shí)數(shù)k的取值范圍為k≤.(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實(shí)數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實(shí)數(shù)k的值為﹣2.考點(diǎn):一元二次方程根與系數(shù)的關(guān)系,根的判別式.23、(1)拋物線的解析式是.直線AB的解析式是.(2).(3)P點(diǎn)的橫坐標(biāo)是或.【解析】

(1)分別利用待定系數(shù)法求兩函數(shù)的解析式:把A(3,0)B(0,﹣3)分別代入y=x2+mx+n與y=kx+b,得到關(guān)于m、n的兩個方程組,解方程組即可;(2)設(shè)點(diǎn)P的坐標(biāo)是(t,t﹣3),則M(t,t2﹣2t﹣3),用P點(diǎn)的縱坐標(biāo)減去M的縱坐標(biāo)得到PM的長,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根據(jù)二次函數(shù)的最值得到當(dāng)t=﹣=時,PM最長為=,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計算即可;(3)由PM∥OB,根據(jù)平行四邊形的判定得到當(dāng)PM=OB時,點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形,然后討論:當(dāng)P在第四象限:PM=OB=3,PM最長時只有,所以不可能;當(dāng)P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;當(dāng)P在第三象限:PM=OB=3,t2﹣3t=3,分別解一元二次方程即可得到滿足條件的t的值.【詳解】解:(1)把A(3,0)B(0,-3)代入,得解得所以拋物線的解析式是.設(shè)直線AB的解析式是,把A(3,0)B(0,)代入,得解得所以直線AB的解析式是.(2)設(shè)點(diǎn)P的坐標(biāo)是(),則M(,),因?yàn)樵诘谒南笙?,所以PM=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論