版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023高二下數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是雙曲線的右焦點,過點向的一條漸近線引垂線,垂足為,交另一條漸近線于點.若,則雙曲線的離心率是()A. B.2 C. D.2.在極坐標中,O為極點,曲線C:ρ=2cosθ上兩點A、A.34 B.34 C.33.已知的展開式中的系數(shù)為5,則()A.4 B.3 C.2 D.-14.若三角形的兩內(nèi)角α,β滿足sinαcosβ<0,則此三角形必為()A.銳角三角形 B.鈍角三角形C.直角三角形 D.以上三種情況都可能5.若滿足約束條件,則的最大值為()A.9 B.5 C.11 D.36.既是偶函數(shù)又在區(qū)間上單調(diào)遞減的函數(shù)是()A. B. C. D.7.函數(shù)()的圖象的大致形狀是()A. B. C. D.8.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.將4名實習教師分配到高一年級三個班實習,每班至少安排一名教師,則不同的分配方案有()種A.12 B.36 C.72 D.10811.如圖是某手機商城2018年華為、蘋果、三星三種品牌的手機各季度銷量的百分比堆積圖(如:第三季度華為銷量約占50%,蘋果銷量約占20%,三星銷量約占30%).根據(jù)該圖,以下結論中一定正確的是()A.華為的全年銷量最大 B.蘋果第二季度的銷量大于第三季度的銷量C.華為銷量最大的是第四季度 D.三星銷量最小的是第四季度12.已知函數(shù)在定義域上有兩個極值點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓(a>b>0)的離心率為e,,分別為橢圓的兩個焦點,若橢圓上存在點P使得∠是鈍角,則滿足條件的一個e的值為____________14.西周初數(shù)學家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數(shù)稱為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個數(shù)中隨機抽取3個數(shù),則這3個數(shù)能構成勾股數(shù)的概率為__________.15.已知集合,,若,則實數(shù)的取值范圍是_______.16.執(zhí)行如圖所示的程序框圖,則輸出的的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)[選修4-4:坐標系及參數(shù)方程]已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程及曲線上的動點到坐標原點的距離的最大值;(2)若曲線與曲線相交于,兩點,且與軸相交于點,求的值.18.(12分)已知函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)當時,在定義域內(nèi)恒成立,求實數(shù)的值.19.(12分)乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結束),假設兩人在每一局比賽中獲勝的可能性相同.(1)求乙以4比1獲勝的概率;(2)求甲獲勝且比賽局數(shù)多于5局的概率.20.(12分)已知函數(shù),.(1)求函數(shù)的最小正周期;(2)求函數(shù)的對稱中心和單調(diào)遞增區(qū)間.21.(12分)近年來,鄭州經(jīng)濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(1)求的值;(2)若按照分層抽樣從[50,60),[60,70)中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在[50,60)的概率.22.(10分)隨著西部大開發(fā)的深入,西南地區(qū)的大學越來越受到廣大考生的青睞,下表是西南地區(qū)某大學近五年的錄取平均分與省一本線對比表:年份20142015201620172018年份代碼12345省一本線505500525500530錄取平均分533534566547580錄取平均分與省一本線分差y2834414750(1)根據(jù)上表數(shù)據(jù)可知,y與t之間存在線性相關關系,求y關于t的線性回歸方程;(2)據(jù)以往數(shù)據(jù)可知,該大學每年的錄取分數(shù)X服從正態(tài)分布,其中為當年該大學的錄取平均分,假設2019年該省一本線為520分,李華2019年高考考了569分,他很喜歡這所大學,想第一志愿填報,請利用概率與統(tǒng)計知識,給李華一個合理的建議.(第一志愿錄取可能性低于,則建議謹慎報考)參考公式:,.參考數(shù)據(jù):,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:雙曲線的漸近線為,到一條漸近線的距離,則,在中,,則,設的傾斜角為,則,,在中,,在中,,而,代入化簡可得到,因此離心率考點:雙曲線的離心率;2、A【解析】
將A、B兩點的極角代入曲線C的極坐標方程,求出OA、OB,將A、B的極角作差取絕對值得出∠AOB,最后利用三角形的面積公式可求出ΔAOB的面積?!驹斀狻恳李}意得:A3,π6、所以SΔAOB=1【點睛】本題考查利用極坐標求三角形的面積,理解極坐標中極徑、極角的含義,體會數(shù)與形之間的關系,并充分利用正弦、余弦定理以及三角形面積公式求解弦長、角度問題以及面積問題,能起到簡化計算的作用。3、D【解析】
將化簡為:分別計算的系數(shù),相加為5解得.【詳解】中的系數(shù)為:的系數(shù)為:的系數(shù)為:故答案選D【點睛】本題考查了二項式定理的計算,分成兩種情況簡化了計算.4、B【解析】
由于為三角形內(nèi)角,故,所以,即為鈍角,三角形為鈍角三角形,故選B.5、A【解析】
先作出不等式組所表示的可行域,然后平移直線,觀察直線在軸上的截距取最大值時對應的最優(yōu)解,將最優(yōu)解代入函數(shù)即可得出答案?!驹斀狻孔鞒霾坏仁浇M所表示的可行域如下圖所示:聯(lián)立,得,點的坐標為,平移直線,當該直線經(jīng)過點,它在軸上的截距取最大值,此時,取最大值,即,故選:A.【點睛】本題考查線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,解題思路就是作出可行域,平移直線觀察在坐標軸上的截距變化尋找最優(yōu)解,是常考題型,屬于中等題。6、D【解析】
試題分析:根據(jù)函數(shù)和都是奇函數(shù),故排除A,C;由于函數(shù)是偶函數(shù),周期為,在上是減函數(shù),在上是增函數(shù),故不滿足題意條件,即B不正確;由于函數(shù)是偶函數(shù),周期為,且在上是減函數(shù),故滿足題意,故選D.考點:余弦函數(shù)的奇偶性;余弦函數(shù)的單調(diào)性.7、C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關函數(shù)模型,利用這一函數(shù)模型來分析解決問題.8、C【解析】
當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.9、D【解析】取,則,但,故;取,則,但是,故,故“”是“”的既不充分也不必要條件,選D.10、B【解析】試題分析:第一步從名實習教師中選出名組成一個復合元素,共有種,第二步把個元素(包含一個復合元素)安排到三個班實習有,根據(jù)分步計數(shù)原理不同的分配方案有種,故選B.考點:計數(shù)原理的應用.11、A【解析】
根據(jù)圖象即可看出,華為在每個季度的銷量都最大,從而得出華為的全年銷量最大,從而得出正確;由于不知每個季度的銷量多少,從而蘋果、華為和三星在哪個季度的銷量大或小是沒法判斷的,從而得出選項,,都錯誤.【詳解】根據(jù)圖象可看出,華為在每個季度的銷量都最大,所以華為的全年銷量最大;每個季度的銷量不知道,根據(jù)每個季度的百分比是不能比較蘋果在第二季度和第三季度銷量多少的,同樣不能判斷華為在哪個季度銷量最大,三星在哪個季度銷量最??;,,都錯誤,故選.【點睛】本題主要考查對銷量百分比堆積圖的理解.12、D【解析】
根據(jù)等價轉(zhuǎn)化的思想,可得在定義域中有兩個不同的實數(shù)根,然后利用根的分布情況,進行計算,可得結果.【詳解】,令,方程有兩個不等正根,,則:故選:D【點睛】本題考查根據(jù)函數(shù)極值點求參數(shù),還考查二次函數(shù)根的分布問題,難點在于使用等價轉(zhuǎn)化的思想,化繁為簡,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一,<e<1)【解析】
當為短軸端點時,最大,因此滿足題意時,此角必為鈍角.【詳解】由題意當為短軸端點時,為鈍角,∴,∴,,,∴.答案可為.【點睛】本題考查橢圓的幾何性質(zhì).解題中注意性質(zhì):是橢圓上任意一點,是橢圓的兩個焦點,當為短軸端點時,最大.14、【解析】
由組合數(shù)結合古典概型求解即可【詳解】從11個數(shù)中隨機抽取3個數(shù)有種不同的方法,其中能構成勾股數(shù)的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數(shù)學文化,考查組合問題,數(shù)據(jù)處理能力和應用意識.15、【解析】
根據(jù),確定參數(shù)的取值范圍.【詳解】若滿足,則.故答案為:【點睛】本題考查根據(jù)集合的包含關系,求參數(shù)的取值范圍,屬于簡單題型.16、1【解析】
列舉出算法的每一步,于此可得出該算法輸出的結果.【詳解】成立,,,,;不成立,輸出的值為,故答案為.【點睛】本題考查算法與程序框圖,要求讀懂程序框圖,解題時一般是列舉每次循環(huán),并寫出相應的結果,考查推理能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】【試題分析】(I)將方程展開后化為直角坐標方程,利用勾股定理求得的長度并求得其最大值.(II)求出直線的參數(shù)方程,代入橢圓方程,利用直線參數(shù)的幾何意義求得的值.【試題解析】(Ⅰ)由得,即曲線的直角坐標方程為根據(jù)題意得,因此曲線上的動點到原點的距離的最大值為(Ⅱ)由(Ⅰ)知直線與軸交點的坐標為,曲線的參數(shù)方程為:,曲線的直角坐標方程為聯(lián)立得……8分又,所以18、(Ⅰ)當時,單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(Ⅱ)【解析】
(Ⅰ)求出函數(shù)的的定義域以及導函數(shù),分類討論,,情況下導數(shù)的正負,由此得到答案;(Ⅱ)結合(Ⅰ)可得函數(shù)的最小值,要使在定義域內(nèi)恒成立,則恒成立,令,利用導數(shù)求出的最值,從而得到實數(shù)的值。【詳解】(Ⅰ)由題可得函數(shù)的的定義域為,;(1)當時,恒成立,則單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間(2)當時,恒成立,則單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;(3)當時,令,解得:,令,解得:,則單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;綜述所述:當時,單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ)由(Ⅰ)可知,當時,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,則;所以在定義域內(nèi)恒成立,則恒成立,即,令,先求的最大值:,令,解得:,令,解得:,令,解得:,所以的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,則所以當時,恒成立,即在定義域內(nèi)恒成立,故答案為【點睛】本題主要考查函數(shù)的單調(diào)性,以及利用導數(shù)研究函數(shù)的最值,考查學生轉(zhuǎn)化的思想和運算求解能力,屬于中檔題。19、(1)(2)【解析】
(1)記“乙以4比1獲勝”為事件A,,則A表示乙贏了3局甲贏了1局,且第五局乙贏,再根據(jù)n次獨立重復實驗中恰好發(fā)生k次的概率計算公式求得的值.(2)利用n次獨立重復實驗中恰好發(fā)生k次的概率計算公式求得甲以4比2獲勝的概率,以及甲以4比3獲勝的概率,再把這2個概率值相加,即得所求.【詳解】解:(1)由已知,甲、乙兩名運動員在每一局比賽中獲勝的概率都是,記“乙以4比1獲勝”為事件A,則A表示乙贏了3局甲贏了一局,且第五局乙贏,∴.(2)記“甲獲勝且比賽局數(shù)多于5局”為事件B,則B表示甲以4比2獲勝,或甲以4比3獲勝.因為甲以4比2獲勝,表示前5局比賽中甲贏了3局且第六局比賽中甲贏了,這時,無需進行第7局比賽,故甲以4比2獲勝的概率為.甲以4比3獲勝,表示前6局比賽中甲贏了3局且第7局比賽中甲贏了,故甲以4比3獲勝的概率為,故甲獲勝且比賽局數(shù)多于5局的概率為.【點睛】問題(1)中要注意乙以4比1獲勝不是指5局中乙勝4局,而是要求乙在前4局中贏3局輸一局,然后第5局一定要贏,要注意審題.問題(2)有“多于”這種字眼的,可以進行分類討論.20、(1).(2),;,.【解析】分析:(1)分別利用兩角和的正弦、余弦公式及二倍角正弦公式化簡函數(shù)式,然后利用用公式求周期即可;(2)根據(jù)正弦函數(shù)的圖象與性質(zhì),求出函數(shù)f(x)的對稱中心與單調(diào)增區(qū)間.詳解:(1)∵.∴.(2)令得:,所以對稱中心為:,令解得單調(diào)遞增區(qū)間為:,.點睛:函數(shù)的性質(zhì)(1).(2)周期(3)由求對稱軸(4)由求增區(qū)間;由求減區(qū)間.21、(1);(2).【解析】
根據(jù)頻率分布直方圖的特點:可列的式子:,求得,根據(jù)圖,可知a=4b,繼而求得a,b,先利用分層抽樣得方法,確定[50,60),[60,70)中分別抽取的人數(shù),然后利用古典概型,求得概率【詳解】(1)依題意得,所以,又a=4b,所以a=0.024,b=0.1.(2)依題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學機械工程(機械制造理論)試題及答案
- 2025年大學康復治療(作業(yè)治療)試題及答案
- 2025年中職應用保加利亞語(日常保語交流)試題及答案
- 2025年中職汽車制造與檢測(汽車組裝)試題及答案
- 運動場監(jiān)理規(guī)劃
- 傳染病消毒隔離管理制度
- 工行業(yè)務培訓課件
- 2026年港口視頻監(jiān)控員面試含答案
- 2026年緊急集合攜帶物資與時限要求試題含答案
- 2026年延長石油油藏工程考試復習題含答案
- 鋼拱架加工技術規(guī)范
- 移動式腳手架培訓課件
- 2025年快遞行業(yè)快遞行業(yè)發(fā)展現(xiàn)狀分析報告
- 2026年江西水利職業(yè)學院單招綜合素質(zhì)考試題庫附答案
- 腎內(nèi)科疾病護理
- 電梯加裝鋼結構施工方案
- 鈉電池專業(yè)知識培訓課件
- 《城市軌道交通初期運營客流預測要求》
- 垂直大模型項目報告
- 子宮腺肌癥護理
- 鄉(xiāng)鎮(zhèn)農(nóng)業(yè)培訓課件
評論
0/150
提交評論