版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省綏化市三校2023年高三5月高考模擬考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.2.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.3.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-24.網(wǎng)絡(luò)是一種先進的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月5.設(shè)集合(為實數(shù)集),,,則()A. B. C. D.6.設(shè)函數(shù)若關(guān)于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.7.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.8.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.9.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.11.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣1212.設(shè)集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值是______.14.已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.15.在平面直角坐標系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點從左到右依次為,,…,若點的橫坐標為1,則點的橫坐標為________.16.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)每年3月20日是國際幸福日,某電視臺隨機調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸?!保?Ⅰ)求從這18人中隨機選取3人,至少有1人是“很幸?!钡母怕剩?Ⅱ)以這18人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸?!钡娜藬?shù),求的分布列及.18.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設(shè)點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.19.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.20.(12分)已知動圓經(jīng)過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設(shè)點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.21.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.22.(10分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網(wǎng)絡(luò)知識問卷調(diào)查,每一位學生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應(yīng)的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預(yù)計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:①;②若;則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學生對這些知識的理解掌握水平和分析推理能力.2、A【解析】
若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個結(jié)論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【點睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時要注意挖掘隱含條件.3、B【解析】
通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點睛】本題主要考查復(fù)數(shù)的基本運算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.4、C【解析】
根據(jù)圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實際應(yīng)用,基礎(chǔ)題.5、A【解析】
根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎(chǔ)題.6、B【解析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學生的計算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.7、A【解析】
先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎(chǔ)知識及斜率的運算公式,基礎(chǔ)題.8、B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導函數(shù),計算最值,即可得出答案.9、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.10、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.11、D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎(chǔ)題。12、A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當且僅當,,時等號成立,故答案為:1.【點睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導致該題不易找到思路,屬于中檔題.14、【解析】
作出圖象,求出方程的根,分類討論的正負,數(shù)形結(jié)合即可.【詳解】當時,令,解得,所以當時,,則單調(diào)遞增,當時,,則單調(diào)遞減,當時,單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當時,方程整理得,只有2個根,不滿足條件;(2)若,則當時,方程整理得,則,,此時各有1解,故當時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據(jù)圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當時,和均無解,當時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點睛】本題主要考查了函數(shù)零點與函數(shù)圖象的關(guān)系,考查利用導數(shù)研究函數(shù)的單調(diào)性,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.15、1【解析】
當時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標為1,即當時,,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點從左到右依次為,,所以,故,所以函數(shù)的關(guān)系式為.當時,(1),即點的橫坐標為1,為二函數(shù)的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數(shù)關(guān)系式的恒等變換、正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學生的運算能力及思維能力,屬于中檔題.16、【解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ).(Ⅱ)見解析.【解析】
(Ⅰ)人中很幸福的有人,可以先計算其逆事件,即人都認為不很幸福的概率,再用減去人都認為不很幸福的概率即可;(Ⅱ)根據(jù)題意,隨機變量,列出分布列,根據(jù)公式求出期望即可.【詳解】(Ⅰ)設(shè)事件抽出的人至少有人是“很幸?!钡模瑒t表示人都認為不很幸福(Ⅱ)根據(jù)題意,隨機變量,的可能的取值為;;;所以隨機變量的分布列為:所以的期望【點睛】本題考查了離散型隨機變量的概率分布列,數(shù)學期望的求解,概率分布中的二項分布問題,屬于常規(guī)題型.18、(1)不在,證明見詳解;(2)【解析】
(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達定理,計算,可得,然后驗證可得結(jié)果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點的軌跡方程,然后可得焦點,結(jié)合拋物線定義可得,計算可得結(jié)果.【詳解】(1)設(shè)直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設(shè)線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應(yīng)用,第(1)問中難點在于計算處,第(2)問中關(guān)鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結(jié)合韋達定理,屬難題.19、(1).(2).【解析】
(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設(shè),0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【點睛】本題考查了異面直線夾角,根據(jù)二面角求長度,意在考查學生的空間想象能力和計算能力.20、見解析【解析】
(1)設(shè),則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標準方程為.(2)設(shè),,因為直線的斜率,所以可設(shè)直線的方程為,由及,消去可得,所以,,所以.設(shè)線段的中點為,點的縱坐標為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經(jīng)過點,可得,所以,整理可得,解得或,所以或,又,所以.21、(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- XX實驗初中2026年春季學期垃圾分類實施方案
- 2025-2026學年秋季學期寒假期末教師大會講話:三“靜”蓄力不負時光不負己
- 化妝品安全評估管理手冊
- 求學城市活動策劃方案(3篇)
- 渠道填方施工方案(3篇)
- 煙感施工方案模板(3篇)
- 電解鋼板施工方案(3篇)
- 碼頭駁船施工方案(3篇)
- 立面造型施工方案(3篇)
- 美式別墅施工方案(3篇)
- 高校區(qū)域技術(shù)轉(zhuǎn)移轉(zhuǎn)化中心(福建)光電顯示、海洋氫能分中心主任招聘2人備考題庫及答案詳解(考點梳理)
- 航空安保審計培訓課件
- 2026四川成都錦江投資發(fā)展集團有限責任公司招聘18人備考題庫有答案詳解
- 高層建筑滅火器配置專項施工方案
- 2026元旦主題班會:馬年猜猜樂馬年成語教學課件
- 2023年湖北煙草筆試試題
- 凝血功能檢測方法與臨床意義
- 人教版五年級數(shù)學用方程解決問題
- 架桿租賃合同
- 哈工大歷年電機學試卷及答案詳解
- GB/T 16886.1-2022醫(yī)療器械生物學評價第1部分:風險管理過程中的評價與試驗
評論
0/150
提交評論