船舶專業(yè)外文文獻(xiàn)_第1頁
船舶專業(yè)外文文獻(xiàn)_第2頁
船舶專業(yè)外文文獻(xiàn)_第3頁
船舶專業(yè)外文文獻(xiàn)_第4頁
船舶專業(yè)外文文獻(xiàn)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

SpatialschedulingforlargeassemblyblocksinshipbuildingAbstract:Thispaperaddressesthespatialschedulingproblem(SPP)forlargeassemblyblocks,whicharisesinashipyardassemblyshop.Thespatialschedulingproblemistoscheduleasetofjobs,ofwhicheachrequiresitsphysicalspaceinarestrictedspace.Thisproblemiscomplicatedbecauseboththeschedulingofassemblieswithdifferentduedatesandearlieststartingtimesandthespatialallocationofblockswithdifferentsizesandloadsmustbeconsideredsimultaneously.Thisproblemunderconsiderationaimstotheminimizationofboththemakespanandtheloadbalanceandincludesvariousreal-worldconstraints,whichincludesthepossibledirectionalrotationofblocks,theexistenceofsymmetricblocks,andtheassignmentofsomeblockstodesignatedworkplacesorworkteams.Theproblemisformulatedasamixedintegerprogramming(MIP)modelandsolvedbyacommerciallyavailablesolver.Atwo-stageheuristicalgorithmhasbeendevelopedtousedispatchingpriorityrulesandadiagonalfillspaceallocationmethod,whichisamodificationofbottom-left-fillspaceallocationmethod.ThecomparisonandcomputationalresultsshowstheproposedMIPmodelaccommodatesvariousconstraintsandtheproposedheuristicalgorithmsolvesthespatialschedulingproblemseffectivelyandefficiently.Keywords:Largeassemblyblock;Spatialscheduling;Loadbalancing;Makespan;Shipbuilding1.IntroductionShipbuildingisacomplexproductionprocesscharacterizedbyheavyandlargeparts,variousequipment,skilledprofessionals,prolongedleadtime,andheterogeneousresourcerequirements.Theshipbuildingprocessisdividedintosubprocessesintheshipyard,includingshipdesign,cuttingandbendingoperations,blockassembly,outfitting,painting,pre-erectionanderection.Theassemblyblocksarecalledtheminorassemblyblock,thesubassemblyblock,andthelargeassemblyblockaccordingtotheirsizeandprogressesinthecourseofassemblyprocesses.Thispaperfocusesonthespatialschedulingproblemoflargeassemblyblocksinassemblyshops.Fig.1showsasnapshotoflargeassemblyblocksinashipyardassemblyshop.Recently,theresearchersandpractitionersatacademiaandshipbuildingindustriesrecentlygottogetherat“SmartProductionTechnologyForuminShipbuildingandOceanPlantIndustries”torecognizethattherearevariousspatialschedulingproblemsineveryaspectofshipbuildingduetothelimitedspace,facilities,equipment,laborandtime.TheSPPsoccurinvariousworkingareassuchascuttingandblastshops,assemblyshops,outfittingshops,pre-erectionyard,anddrydocks.TheSPPatdifferentareashasdifferentrequirementsandconstraintstocharacterizetheuniqueSPPs.Inaddition,thedepletionofenergyresourcesonlandputmoreemphasisontheoceandevelopment.Theshipbuildingindustriesfacethetransitionoffocusfromthetraditionalshipbuildingtooceanplantmanufacturing.Therefore,thediversityofassemblyblocks,materials,facilitiesandoperationsinshipyardsincreasesrapidly.TherearesomesolutionproviderssuchasSiemens?andDassultSystems?toprovideintegratedsoftwareincludingproductlifemanagement,enterpriseresourceplanningsystem,simulationandetc.Theyindicatedtheneedsofefficientalgorithmstosolvemedium-tolarge-sizedSPPproblemsin20

min,sothattheshopcanquicklyre-optimizetheproductionplanuponthefrequentandunexpectedchangesinshopfloorswiththeongoingoperationsonexitingblocksintact.Therearemanydifferentapplicationswhichrequireefficientschedulingalgorithmswithvariousconstraintsandcharacteristics(KimandMoon,2003,Kimetal.,2013,NguyenandYun,2014

and

Yanetal.,2014).However,thespatialschedulingproblemwhichconsidersspatiallayoutanddynamicjobschedulinghasnotbeenstudiedextensively.Untilnow,spatialschedulinghastobecarriedoutbyhumanschedulersonlywiththeirexperiencesandhistoricaldata.Evenwhenhumanexpertshavemuchexperienceinspatialscheduling,ittakesalongtimeandintensiveefforttoproduceasatisfactoryschedule,duetothecomplexityofconsideringblocks’geometricshapes,loads,requiredfacilities,etc.Inpractice,spatialschedulingformorethanasix-monthperiodisbeyondthehumanschedulers’capacity.Moreover,thespaceintheworkingareastendstobethemostcriticalresourceinshipbuilding.Therefore,theeffectivemanagementofspatialresourcesthroughautomationofthespatialschedulingprocessisacriticalissueintheimprovementofproductivityinshipbuildingplants.Ashipyardassemblyshopisconsistedofpinnedworkplaces,equipment,andoverhangcranes.Duetotheheavyweightoflargeassemblyblock,overhangcranesareusedtoaccessanyareasoverotherobjectswithoutanyhindranceintheassemblyshop.Theheightofcranescanlimittheheightofblocksthatcanbeassembledintheshop.Theshopcanbeconsideredasatwo-dimensionalspace.Theblocksareplacedonpreciselypinnedworkplaces.Oncetheblockisallocatedtoacertainareainaworkplace,itisdesirablenottomovetheblockagaintodifferentlocationsduetothesizeandweightofthelargeassemblyblocks.Therefore,itisimportanttoallocatetheworkspacetoeachblockcarefully,sothattheworkspaceinanassemblyshopcanbeutilizedinamostefficientway.Inaddition,sinceeachblockhasitsduedatewhichispre-determinedatthestageofshipdesign,thetardinessofablockassemblycanleadtoseveredelayinthefollowingoperations.Therefore,inthespatialschedulingproblemforlargeassemblyblocks,theschedulingofassemblyprocessesforblocksandtheallocationofblockstospecificlocationsinworkplacesmustbeconsideredatthesametime.Astheterminologysuggests,spatialschedulingpursuestheoptimalspatiallayoutandthedynamicschedulewhichcanalsosatisfytraditionalschedulingconstraintssimultaneously.Inaddition,therearemanyconstraintsorrequirementswhichareseriousconcernsonshopfloorsandthesecomplicatetheSPP.Theconstraintsorrequirementsthisstudyconsideredareexplainedhere:(1)Blockscanbeputineitherdirections,horizontalorvertical.(2)Sincetheshipissymmetricaroundthecenterline,thereexistsymmetricblocks.Thesesymmetricblocksarerequiredtobeputnexttoeachotheronthesameworkplace.(3)Someblocksarerequiredtobeputonacertainspecialareaoftheworkplace,becausetheworkteamsonthatareahasspecialequipmentorskillstoachieveacertainlevelofqualityorcompletethenecessarytasks.(4)Frequently,theproductionplanmaynotbeimplementedasplanned,sothatfrequentmodificationsinproductionplansarerequiredtocopewiththechangesintheshop.Atthesemodifications,itisrequiredtoproduceanewmodifiedproductionplanwhichdoesnotremoveormovethepre-existingblocksintheworkplacetocompletetheongoingoperations.(5)Ifpossibleatanytime,theloadbalancingovertheworkteams,i.e.,workplacesaredesirableinordertoThedecisionvariablesofspatialschedulingproblemare(x,y,z)coordinatesofallblockswithinathree-dimensionalspacewhosesizesareLENW,WIDWandTinx,yandzaxes,whereTrepresentstheplanninghorizon.ThisspaceisillustratedinFig.5.InFig.6,thespatialschedulingoftwoblocksintoaworkplaceisillustratedasanexample.Theparametersp1andp2indicatetheprocessingtimesforBlocks1and2,respectively.Asshowninzaxis,Block2isscheduledafterBlock1iscompleted.4.Atwo-stageheuristicalgorithmThecomputationalexperimentsfortheMIPmodelinSection3havebeenconductedusingacommerciallyavailablesolver,LINGO?.Obtainingglobaloptimumsolutionsisverytimeconsuming,consideringthenumberofvariablesandconstraints.Ashipisconsistedofmorethan8hundredlargeblocksandthesizeofproblemusingMIPmodelisbeyondtoday’scomputationalability.Atwo-stageheuristicalgorithmhasbeenproposedusingthedispatchingpriorityrulesandadiagonalfillmethod.4.1.Stage1:LoadbalancingandsequencingPastresearchonspatialschedulingproblemsconsidersvariouspriorityrules.Leeetal.(1996)usedapriorityrulefortheminimumslacktimeofblocks.Choetal.(2001)andParketal.(2002)usedtheearliestduedate.Shinetal.(2008)consideredthreedispatchingpriorityrulesforstartdate,finishdateandgeometriccharacteristics(length,breadth,andarea)ofblocks.LiuandTeng(1999)compared9differentdispatchingpriorityrulesincludingfirst-comefirst-serve,shortestprocessingtime,leastslack,earliestduedate,criticalratio,mostwaitingtimemultipliedbytonnage,minimalarearesidue,andrandomjobselection.Zhengetal.(2012)usedadispatchingruleoflongestprocessingtimeandearlieststarttime.Twopriorityrulesareusedinthisstudytodivideallblocksintogroupsforloadbalancingandtosequencethemconsideringtheduedateandearlieststartingtime.Twopriorityrulesarestreamlinedtoload-balanceandsequencetheblocksintoanalgorithmwhichisillustratedinFig.7.Thefirststepofthealgorithminthisstageistogrouptheblocksbasedontheurgencypriority.Theurgencypriorityiscalculatedbysubtractingtheearlieststartingtimeandtheprocessingtimefromtheduedateforeachblock.Thesmallertheurgencypriority,themoreurgenttheblockneedstobedscheduled.Thenallblocksaregroupedintoanappropriatenumberofgroupsforareasonablenumberoflevelsinurgencypriorities.Letgbethisdiscretionarynumberofgroups.Thereareggroupsofblocksbasedontheurgencyofblocks.Thenumberofblocksineachgroupdoesnotneedtobeidentical.Blocksineachgrouparere-orderedgroupedintoasmanysubgroupsasworkplaces,consideringtheworkloadofblockssuchastheweightorweldinglength.Theblocksineachsubgrouphavethesimilarurgencyandworkloads.Then,theseblocksineachsubgroupareorderedinanascendingorderoftheearlieststartingtime.Thisorderingwillbeusedtoblockallocationsinsequence.Thesubgroupcorrespondstotheworkplace.Ifblockimustbeprocessedatworkplacewandiscurrentlyallocatedtootherworkplaceorsubgroupthanw,blockiisswappedwithablockatthesamepositionofblockiinanascendingorderoftheearlieststartingtimeatitsworkplace(orsubgroup).Sincethesymmetricblocksmustbelocatedonasameworkplace,asimilarswappingmethodcanbeused.Oneofsymmetricblockswhichareallocatedintodifferentworkplace(orsubgroups)needstobeselectedfirst.Inthisstudy,weselectedoneofsymmetricblockswhicheverhasshownupearlierinanascendingorderoftheearlieststartingtimeattheircorrespondingworkplace(orsubgroup).Then,theselectedblockisswappedwithablockatthesamepositionofsymmetricblocksinanascendingorderoftheearlieststartingtimeatitsworkplace(orsubgroups).4.2.Stage2:SpatialallocationOncetheblocksinaworkplace(orsubgroup)aresequentiallyorderedindifferenturgencyprioritygroups,eachblockcanbeassignedtoworkplacesonebyone,andallocatedtoaspecificlocationonaworkplace.Therehasbeenpreviousresearchonheuristicplacementmethods.Thebottom-left(BL)placementmethodwasproposedbyBaker,Coffman,andRivest(1980)andplacesrectanglessequentiallyinabottom-leftmostposition.Jakobs(1996)usedabottom-leftmethodthatiscombinedwithahybridgeneticalgorithm(seeFig.8).LiuandTeng(1999)developedanextendedbottom-leftheuristicwhichgivesprioritytodownwardmovement,wheretherectanglesisonlyslideleftwardsifnodownwardmovementispossible.Chazele(1983)proposedthebottom-left-fill(BLF)method,whichsearchesforlowestbottom-leftpoint,holesatthelowestbottom-leftpointandthenplacetherectanglesequentiallyinthatbottom-leftposition.Iftherectangleisnotoverlapped,therectangleisplacedandthepointlistisupdatedtoindicatenewplacementpositions.Iftherectangleisoverlapped,thenextpointinthepointlistisselecteduntiltherectanglecanbeplacedwithoutanyoverlap.HopperandTurton(2000)madeacomparisonbetweentheBLandBLFmethods.TheyconcludedthattheBLFmethodalgorithmachievesbetterassignmentpatternsthantheBLmethodforHopper’sexampleproblems.Spatialallocationinshipbuildingisdifferentfromtwo-dimensionalpackingproblem.Blockshaveirregularpolygonalshapesinthespatialallocationandblockscontinuouslyappearanddisappearsincetheyhavetheirprocessingtimes.ThisfrequentplacementandremovalofblocksmakesBLFmethodlesseffectiveinspatialallocationoflargeassemblyblock.Inordertosolvethesedrawbacks,wehavemodifiedtheBLFmethodappropriatetospatialschedulingforlargeassemblyblocks.Inaworkplace,sincetheblocksareplacedandremovedcontinuously,itismoreefficienttoconsiderboththebottom-leftandtop-rightpointsofplacedblocksinsteadofbottom-leftpointsonly.Wedenoteitasdiagonalfillplacement(seeFig.9).Sincethenumberofpotentialplacementconsiderationsincreases,ittakesabitmoretimetoimplementdiagonalfillbutthecomputationalresultsshowsthatitisnegligible.ThediagonalfillmethodshowsbetterperformancesthantheBLFmethodinspatialschedulingproblems.WhentheBLFmethodisusedinspatialallocation,thealgorithmmakestheallocationofsomeblocksdelayeduntiltheinterferencebypre-positionedblocksareremoved.Itgeneratesalesseffectiveandlessefficientspatialschedule.Theproposeddiagonalfillplacementmethodresolvethisdelaysbetterbyallocatingtheblocksassoonaspossibleinagreedyway,asshowninFig.10.Thepotentialdrawbacksfromthegreedyapproachesisresolvedbyanotherplacementstrategytominimizethepossibledeadspaces,whichwillbeexplainedinthefollowingparagraphs.TheBLFmethodonlyfocusedontwo-dimensionalbinpacking.Frequentremovalandplacementofblocksinaworkspacemayleadtoaccumulationofdeadspaces,whicharesmallandunusablespacesamongblocks.Aminimalpossible-deadspacestrategyhasbeenusedalongwiththeBLFmethod.Possible-deadspacesarebeinggeneratedoverthespatialschedulingandtheyhavelesschancetobeallocatedforfutureblocks.Theminimalpossible-deadspacestrategyminimizesthepotentialdeadspaceafterallocatingthefollowingblocks(Chung,2001

and

Kohetal.,2008)byconsideringthe0°and90°rotationoftheblockandallocatingthefollowingblockforminimalpossible-deadspace.Fig.11showsanexampleofthreepossible-deadspacecalculationsusingtheneighborblocksearchmethod.Whenanewschedulingblockisconsideredtobeallocated,therectangularboundaryofneighboringblocksandtheschedulingblocksissearched.Thisboundarycanbecalculatedbyobtainingthesmallestandthelargestxandycoordinatesofneighboringblocksandtheschedulingblocks.Throughthisprocedure,thepossible-deadspacecanbecalculatedasshowninFig.11.Consideringtherotationoftheschedulingblocksandtheplacementconsiderationpointsfromthediagonalfillplacementmethods,theschedulingblockswillbefinallyallocated.Inthistwo-stagealgorithm,blockstendtobeplacedadjacenttooneofthealternativeedgesandtheirassignmentsaredonepreferentiallytominimizefracturedspaces.5.ComputationalresultsTodemonstratetheeffectivenessandefficiencyoftheproposedMIPformulationandheuristicalgorithm,theactualdataabout800+largeassemblyblocksfromoneofmajorshipbuildingcompanieshasbeenobtainedandused.Alltestproblemsaregeneratedfromthisreal-worlddata.AllcomputationalexperimentshavebeencarriedoutonapersonalcomputerwithaIntel?Core?i3-2100CPU@3.10

GHzwith2

GBRAM.TheMIPmodelinSection3hasbeenprogrammedandsolvedusingLINGO?version10.0,acommerciallyavailablesoftwarewhichcansolvelinearandnonlinearmodels.Theproposedtwo-stageheuristicalgorithmhasbeenprogrammedinJAVAprogramminglanguage.Becauseourcomputationaleffortstoobtaintheoptimalsolutionsforevensmallproblemsaremorethansignificant,thecomplexityofSPPcanberecognizedasoneofmostdifficultandtimeconsumingproblems.DependingonthescalingfactorαinobjectivefunctionoftheproposedMIPformulation,theperformanceoftheMIPmodelvariessignificantly.Settingαlessthan0.01makestheloadbalancingcapabilitytobeignoredfromtheoptimalsolutionintheMIPmodel.Forcomputationalexperimentsinthisstudy,theresultswiththescalingfactorsetto0.01isshownanddiscussed.Thevalueneedstobefine-turnedtoobtainthedesirableoutcomes.Table1showsacomparisonofcomputationalresultsandperformancebetweentheMIPmodelsandtwo-stageheuristicalgorithm.AsshowninTable1,theproposedtwo-stageheuristicalgorithmfindsthenear-optimalsolutionsformediumandlargeproblemsveryquicklywhiletheoptimalMIPmodelswasnotabletosolvetheproblemsofmediumorlargesizesduetothememoryshortageoncomputers.ItisobservedthatthecomputationaltimesfortheMIPproblemsarerapidlygrowingastheproblemsizesincreases.ThetestproblemsinTable1have2workplaces.Table1.ComputationalresultsandperformancebetweentheMIPmodelsandtwo-stageheuristicalgorithm.NumberofblocksTheMIPmodelTwo-stageheuristicalgorithmOptimalsolutionTime(s)BestknownsolutionTime(s)1012.3601014.00012.3600.0262022.380a38250.00021.3800.0783098.344a38255.00030.7400.21850––53.7600.719100––133.7802.948200––328.86012.523300––416.06040.154400––532.36073.214Bestfeasiblesolutionafter10

hinGlobalSolverofLINGO?.\o"Full-sizetable-Opensnewwindow"Full-sizetableTableoptions\o"Viewinworkspace"Viewinworkspace\o"DownloadasCSV"DownloadasCSVTheoptimalsolutionsfortestproblemswithmorethan50blocksinTable1havebeennotobtainedevenafter24

h.Thebestknownfeasiblesolutionsafter10

hforthetestproblemswith20blocksand30blocksarereportedinTable1.ItisobservedthattheLINGO?doesnotsolvethenonlinearconstraintsverywellasshowninTable1.Forverysmallproblemwith10blocks,theLINGO?wasabletoachievetheoptimalsolutions.Forslightlybiggerproblems,theLINGO?tooksignificantlymoretimetofindfeasiblesolutions.Fromthisobservation,theapproachestoobtainthelowerboundthroughtherelaxationmethodandupperboundsaresignificantrequiredinfutureresearch.Incontrary,theproposedtwo-stageheuristicalgorithmwasabletofindthegoodsolutionsveryquickly.Forthesmallesttestproblemwith10blocks,itwasabletofindtheoptimalsolutionaswell.Thecomputationaltimesare1014and0.026s,respectively,fortheMIPapproachandtheproposedalgorithm.Interestingly,theproposedheuristicalgorithmfoundsignificantlybettersolutionsinonly0.078and0.218

s,respectively,forthetestproblemswith20and30blocks.Forthesetwoproblems,theLINGO?generatestheworsesolutionsthantheheuristicsafter10

hofcomputationaltimes.Thesymbol‘–’inTable1indicatesthattheGlobalSolverofLINGO?didnotfindthefeasiblesolutions.Anotherobservationonthetwo-stageheuristicalgorithmsistherobustcomputationaltimes.Thecomputationtimesdoesnotchangemuchastheproblemsizesincrease.Itisbecausethesimplepriorityrulesareusedwithoutconsideringmanycombinatorialconfigurations.Fig.12showspartialsolutionsoftestproblemswith20and30blockson2workplaces.ThepurposeofFig.12istoshowtheprogressofproductionplanninggeneratedbythetwo-stageheuristicalgorithm.Twoworkplacesareindifferentsizesof(40,30)and(35,40),respectively.6.ConclusionsAsglobalwarmingisexpectedtoopenanewwaytotransportamongcontinentthroughNorthPoleSeaandtoexpeditetheoceansmoreaggressively,theneedsformoreshipsandoceanplantsareforthcoming.Theshipbuildingindustriescurrentlyfaceincreaseddiversityofassemblyblocksinlimitedproductionshipyard.Spatialschedulingforlargeassemblyblocksholdsthekeyroleinsuccessfuloperationsoftheshipbuildingcompanies.Thetaskofspatialschedulingtakesplaceatalmosteverystageofshipbuildingprocessesandthelargeassemblyshopisoneofthemostcongestedoperationalareasintoday’sshipbuilding.Itisalsoknownthatthespatialschedulingproblemhasbeenthemajorsourceofthebottleneck.Thepractitionersinshipbuildingindustriesrequirestheirproductionplanningsystemtooptimizethespatialschedulingandtorespondquicklytothechangesontheshopfloorbyre-optimizingtheproductionplanin20-mintimeframe.Mostcompaniesuseasystememployingheuristicmethodsinanad-hocmannerwithoutknowinghowgoodtheirplanningsystemis.Tobenchmarktheperformanceoftheheuristicalgorithms,anovelMIPmodelhasbeenproposedconsideringvariousreal-worldconstraintsthatareraisedbyfieldprofessionalsandengineers.Thoseincludeblockrotations,symmetricalblocks,pre-existingblocks,loadbalancingandallocationofcertainblockstopre-determinedworkspace.Theseconstraintshavenotbeenconsideredsimultaneouslybypreviousresearchers.TheMIPformulationcanbeusedasatargettoevaluatetheirspatialschedulingsysteminshipbuildingcompanies.Inaddition,theexpectationandneedofmajorsolutioncompaniessuchasSiemens?andDassultSystems?isanefficientandeffectivealgorithmtoperformspatialscheduling.Whenanewtypeofshipsoroceanplantsisdesignedandbuilt,thereisahigherchancetoobserveunexpectedinterruptionsinproductionflows.Theseinterruptionscausesignificantlossesintime,labor,resourceandetc.Therefore,theneedtore-optimizespatialschedulingquicklyinshorteramountofcomputationaltimesbecomesgreater.Theproposedtwo-stageheuristicalgorithmusesasimplepriorityrulesanddispatchingrulestogrouptheblocksforquickloadbalancingandsuggeststhediagonalfillplacementmethodwhichisfittospatialschedulinginshipbuilding.Thecomputationalresultsshowthattheproposedalgorithmfindsgoodsolutionsefficientlyandeffectivelyfortestproblemsofallsizes.Italsodemonstratesthatthecomputationaltimesoftheproposedalgorithmarerobusttoproblemsizes.Infuture,duetotheincapabilityoftheMIPsolvertoobtaintheoptimalsolutionefficiently,therelationoftheproposedmodelisbeingperformedtoobtainthelowerbound.AcknowledgementThisworkwassupportedbya2-YearResearchGrantofPusanNationalUniversity.ReferenceBakeretal.,1980B.S.Baker,E.G.Coffman,R.L.RivestOrthogonalpackingintwodimensionsSIAMJournalofComputing,9(4)(1980),pp.846–855Chazele,1983B.ChazeleThebottom-leftbin-packingheuristic:AnefficientimplementationIEEETransactionsonComputers,c-32(8)(1983),pp.697–707Choetal.,2001K.K.Cho,K.H.Chung,C.Park,J.C.Park,H.S.KimAspatialschedulingsystemforblockpaintingprocessinshipbuildingCIRPAnnals-ManufacturingTechnology,50(1)(2001),pp.339–342Chung,2001Chung,K.H.(2001).Astudyonoperationschedulingsystemforblockpaintingprocessinshipbuilding,Ph.D.Thesis,PusanNationalUniversity.HopperandTurton,2000E.Hopper,B.C.H.TurtonAnempiricalinvestigationofmeta-heuristicandheuristicalgorithmsfora2DpackingproblemEuropeanJournalofOperationsResearch,128(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論