2021年四川省瀘州市古藺縣古藺中學高一數(shù)學理測試題含解析_第1頁
2021年四川省瀘州市古藺縣古藺中學高一數(shù)學理測試題含解析_第2頁
2021年四川省瀘州市古藺縣古藺中學高一數(shù)學理測試題含解析_第3頁
2021年四川省瀘州市古藺縣古藺中學高一數(shù)學理測試題含解析_第4頁
2021年四川省瀘州市古藺縣古藺中學高一數(shù)學理測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021年四川省瀘州市古藺縣古藺中學高一數(shù)學理測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知向量,,若,則與的夾角為()A. B. C. D.參考答案:B【分析】根據(jù)向量數(shù)量積運算的定義可求得夾角的余弦值,從而得到夾角.【詳解】由得:,解得:與的夾角為:本題正確選項:【點睛】本題考查向量夾角的求解,關(guān)鍵是能夠熟練掌握向量數(shù)量積的定義,屬于基礎(chǔ)題.2.在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.標準差參考答案:D【考點】極差、方差與標準差;眾數(shù)、中位數(shù)、平均數(shù).【分析】利用眾數(shù)、平均數(shù)、中位標準差的定義,分別求出,即可得出答案.【解答】解:A樣本數(shù)據(jù):82,84,84,86,86,86,88,88,88,88.B樣本數(shù)據(jù)84,86,86,88,88,88,90,90,90,90眾數(shù)分別為88,90,不相等,A錯.平均數(shù)86,88不相等,B錯.中位數(shù)分別為86,88,不相等,C錯A樣本方差S2==4,標準差S=2,B樣本方差S2==4,標準差S=2,D正確故選D.3.=()A. B. C. D.參考答案:D【考點】運用誘導公式化簡求值.【分析】根據(jù)誘導公式可知cos=cos(π+),進而求得答案.【解答】解:cos=cos(π+)=﹣cos=﹣故選D.4.計算的結(jié)果是(

)A、

B、2

C、

D、

參考答案:B略5.下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增且為偶函數(shù)的是()A.y=x3 B.y=2xC.y=[x](不超過x的最大整數(shù)) D.y=|x|參考答案:D【考點】函數(shù)單調(diào)性的判斷與證明;函數(shù)奇偶性的判斷.【分析】根據(jù)題意,對選項中的函數(shù)的單調(diào)性和奇偶性進行判定即可.【解答】解:對于A,函數(shù)y=x3,是定義域R上的奇函數(shù),不滿足題意;對于B,函數(shù)y=2x,是定義域R上的非奇非偶的函數(shù),不滿足題意;對于C,函數(shù)y=[x],是定義域R上的奇函數(shù),不滿足題意;對于D,函數(shù)y=|x|,是定義域R上的偶函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞增.故選:D.6.若cos2α=,則sin4α+cos4α的值是()A.B.C. D.參考答案:A【考點】同角三角函數(shù)基本關(guān)系的運用.【分析】利用同角三角函數(shù)的基本關(guān)系、二倍角的余弦公式,求得sin2α和cos2α的值,可得sin4α+cos4α的值.【解答】解:∵cos2α=2cos2α﹣1=,∴cos2α=,∴sin2α=1﹣cos2α=,則sin4α+cos4α=+=,故選:A.7.(4分)已知三棱錐S﹣ABC的所有頂點都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=,則球O的表面積是() A. 4π B. π C. 3π D. π參考答案:A考點: 球的體積和表面積.專題: 計算題;空間位置關(guān)系與距離;球.分析: 由三棱錐S﹣ABC的所有頂點都在球O的球面上,SA⊥平面ABC,AB⊥BC,可得SA⊥AC,SB⊥BC,則SC的中點為球心,由勾股定理解得SC,再由球的表面積公式計算即可得到.解答: 如圖,三棱錐S﹣ABC的所有頂點都在球O的球面上,∵SA⊥平面ABC,SA=,AB⊥BC且AB=BC=1,∴AC==,∴SA⊥AC,SB⊥BC,SC===2,∴球O的半徑R=SC=1,∴球O的表面積S=4πR2=4π.故選A.點評: 本題考查球的表面積的求法,合理地作出圖形,確定球心,求出球半徑,是解題的關(guān)鍵.8.已知函數(shù),則等于A.8

B.9

C.11

D.10參考答案:C9.若函數(shù)圖象的兩條相鄰的對稱軸之間的距離為,且該函數(shù)圖象關(guān)于點(x0,0)成中心對稱,,則x0=()A. B. C. D.參考答案:B【考點】函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】利用函數(shù)y=Asin(ωx+φ)的圖象的對稱性,得出結(jié)論.【解答】解:∵函數(shù)圖象的兩條相鄰的對稱軸之間的距離為==,∴ω=2,∴f(x)=sin(2x+).令2x+=kπ,k∈Z,求得x=kπ﹣,故該函數(shù)的圖象的對稱中心為(kπ﹣,0),k∈Z.根據(jù)該函數(shù)圖象關(guān)于點(x0,0)成中心對稱,結(jié)合,則x0=,故選:B.10.已知是奇函數(shù),若,當時,則(A)

(B)

(C)

(D)參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.數(shù)列{an}中,若a1=1,an+1=2an+3(n≥1),則該數(shù)列的通項公式an=.參考答案:2n+1-3,n≥1因為an+1=2an+3,所以an+1+3=2an+3+3=2(an+3),即數(shù)列{an+3}是以a1+3=4為首項,公比q=2的等比數(shù)列,所以數(shù)列的通項an+3=4×2n-1=2n+1,n≥1.所以an=2n+1-3,n≥1.答案:2n+1-3,n≥112.已知集合A={x|x2﹣x﹣6≥0},B={x|x>c},其中c∈R.①集合?RA=_____;②若?x∈R,都有x∈A或x∈B,則c的取值范圍是_____.參考答案:{x|﹣2<x<3};(﹣∞,﹣2]【分析】①先求出集合A,再利用補集的定義求出?RA;②由對?x∈R,都有x∈A或x∈B,所以A∪B=R,從而求出c的取值范圍.【詳解】①∵集合A={x|x2﹣x﹣6≥0}={x|x≤﹣2或x≥3},∴?RA={x|﹣2<x<3};②∵對?x∈R,都有x∈A或x∈B,∴A∪B=R,∵集合A={x|x≤﹣2或x≥3},B={x|x>c},∴c≤﹣2,∴c的取值范圍是:(﹣∞,﹣2],故答案為:{x|﹣2<x<3};(﹣∞,﹣2].【點睛】本題考查的知識點是集合的交集,并集,補集運算,集合的包含關(guān)系判斷及應(yīng)用,難度不大,屬于基礎(chǔ)題.13.已知圓,直線,如果圓M上總存在點A,它關(guān)于直線l的對稱點在x軸上,則k的取值范圍是

.參考答案:圓方程化為,設(shè)圓上一點關(guān)于的對稱點在x軸上為,則,消去化為,設(shè),,得,即,,,,的取值范圍是,故答案為.

14.求函數(shù)f(x)=x2﹣2x+3,x∈[﹣1,2]的值域

.參考答案:[2,6]【考點】二次函數(shù)在閉區(qū)間上的最值.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】首先把二次函數(shù)的一般式轉(zhuǎn)化成頂點式,進一步求出對稱軸方程利用定義域和對稱軸方程的關(guān)系求的結(jié)果.【解答】解:函數(shù)f(x)=x2﹣2x+3=(x﹣1)2+2所以:函數(shù)為開口方向向上,對稱軸為x=1的拋物線由于x∈[﹣1,2]當x=1時,f(x)min=f(1)=2當x=﹣1時,f(x)max=f(﹣1)=6函數(shù)的值域為:[2,6]故答案為:[2,6]【點評】本題考查的知識要點:二次函數(shù)一般式與頂點式的互化,對稱軸和定義域的關(guān)系,函數(shù)的最值.15.已知都為正實數(shù),且用表示中的最大值,記M,則M的最小值為__________,此時,參考答案:

,16.已知α∈(0,π),tan(α﹣)=,則sin(+α)=

.參考答案:

【考點】兩角和與差的正切函數(shù).【分析】由已知利用兩角差的正切函數(shù)公式可求tanα的值,利用同角三角函數(shù)基本關(guān)系式可求cosα,sinα的值,進而利用兩角和的正弦函數(shù)公式即可計算得解.【解答】解:∵α∈(0,π),tan()==,解得:tanα=2,∴可得:α∈(0,),∴cosα==,sinα=,∴sin()=+=.故答案為:.【點評】本題主要考查了兩角差的正切函數(shù)公式,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.17.已知三個事件A,B,C兩兩互斥,且,,,則_______.參考答案:0.9【分析】先計算,再計算【詳解】故答案為:0.9【點睛】本題考查了互斥事件的概率,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分14分)設(shè)函數(shù),其中向量,,,且的圖象經(jīng)過點.(1)求實數(shù)的值;(2)若銳角滿足,求的值

參考答案:(Ⅰ),由已知,得.(Ⅱ)由(Ⅰ)得,由得,故又由,,故,解得.從而.19.已知函數(shù)f(x)=(p,q為常數(shù))是定義在[﹣1,1]上的奇函數(shù),且f(1)=.(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)判斷f(x)在[﹣1,1]上的單調(diào)性,并用定義證明;(Ⅲ)解關(guān)于x的不等式f(x﹣1)+f(x)<0.參考答案:【考點】奇偶性與單調(diào)性的綜合.【分析】(Ⅰ)根據(jù)題意,由奇函數(shù)的性質(zhì)可得f(0)=0,解可得q的值,又由f(1)=,分析可得p的值,即可得函數(shù)的解析式;(Ⅱ)任取﹣1≤x1<x2≤1,利用作差法分析可得答案;(Ⅲ)利用函數(shù)的奇偶性與單調(diào)性分析可以將原不等式變形為f(x﹣1)<f(﹣x),進而可得,解可得x的取值范圍,即可得答案.【解答】解:(Ⅰ)依題意,函數(shù)(p,q為常數(shù))是定義在[﹣1,1]上的奇函數(shù),則有f(0)=q=0,則f(x)=,又由f(1)=,則f(1)==,解可得p=1,所以;(Ⅱ)函數(shù)f(x)在[﹣1,1]上單調(diào)遞增,證明如下:任取﹣1≤x1<x2≤1,則x1﹣x2<0,﹣1≤x1x2<1,從而f(x1)﹣f(x2)=﹣=<0,所以f(x1)<f(x2),所以函數(shù)f(x)在[﹣1,1]上單調(diào)遞增.(Ⅲ)原不等式可化為:f(x﹣1)<﹣f(x),即f(x﹣1)<f(﹣x)由(Ⅱ)可得,函數(shù)f(x)在[﹣1,1]上單調(diào)遞增,所以有,解得,即原不等式解集為.20.(8分)已知函數(shù)y=Asin(ωx+φ)(A>0,|φ|<π)的一段圖象(如圖)所示.

①求函數(shù)的解析式;

②求這個函數(shù)的單調(diào)增區(qū)間參考答案:略21.某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論