版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省鄭州市第五中學(xué)2024學(xué)年數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.2.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.3.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.124.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知復(fù)數(shù),為的共軛復(fù)數(shù),則()A. B. C. D.6.拋物線(xiàn)的焦點(diǎn)為,點(diǎn)是上一點(diǎn),,則()A. B. C. D.7.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.橢圓是日常生活中常見(jiàn)的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過(guò)程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.9.已知雙曲線(xiàn):(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線(xiàn)的一條漸近線(xiàn)截得的弦長(zhǎng)為,則雙曲線(xiàn)的離心率為()A.2 B. C. D.310.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線(xiàn)與所成角的余弦值為,則()A.直線(xiàn)與直線(xiàn)異面,且 B.直線(xiàn)與直線(xiàn)共面,且C.直線(xiàn)與直線(xiàn)異面,且 D.直線(xiàn)與直線(xiàn)共面,且11.設(shè)為的兩個(gè)零點(diǎn),且的最小值為1,則()A. B. C. D.12.已知拋物線(xiàn)和點(diǎn),直線(xiàn)與拋物線(xiàn)交于不同兩點(diǎn),,直線(xiàn)與拋物線(xiàn)交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線(xiàn)準(zhǔn)線(xiàn)相離;②直線(xiàn)與直線(xiàn)的斜率乘積為;③設(shè)過(guò)點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿(mǎn)足條件,則的最大值為_(kāi)_________.14.?dāng)?shù)學(xué)家狄里克雷對(duì)數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn),是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱(chēng)為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:①的值域?yàn)?②;③;④其中正確的結(jié)論是_______(寫(xiě)出所有正確的結(jié)論的序號(hào))15.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為_(kāi)_________.16.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)數(shù)列滿(mǎn)足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),為的前n項(xiàng)和,求證:.18.(12分)在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程是為參數(shù)),曲線(xiàn)的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線(xiàn)和曲線(xiàn)的極坐標(biāo)方程;(2)已知射線(xiàn)與曲線(xiàn)交于兩點(diǎn),射線(xiàn)與直線(xiàn)交于點(diǎn),若的面積為1,求的值和弦長(zhǎng).19.(12分)隨著小汽車(chē)的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報(bào)名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過(guò)四個(gè)科目的考試,其中科目二為場(chǎng)地考試.在一次報(bào)名中,每個(gè)學(xué)員有5次參加科目二考試的機(jī)會(huì)(這5次考試機(jī)會(huì)中任何一次通過(guò)考試,就算順利通過(guò),即進(jìn)入下一科目考試;若5次都沒(méi)有通過(guò),則需重新報(bào)名),其中前2次參加科目二考試免費(fèi),若前2次都沒(méi)有通過(guò),則以后每次參加科目二考試都需要交200元的補(bǔ)考費(fèi).某駕校對(duì)以往2000個(gè)學(xué)員第1次參加科目二考試進(jìn)行了統(tǒng)計(jì),得到下表:考試情況男學(xué)員女學(xué)員第1次考科目二人數(shù)1200800第1次通過(guò)科目二人數(shù)960600第1次未通過(guò)科目二人數(shù)240200若以上表得到的男、女學(xué)員第1次通過(guò)科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過(guò)科目二考試的概率,且每人每次是否通過(guò)科目二考試相互獨(dú)立.現(xiàn)有一對(duì)夫妻同時(shí)在此駕校報(bào)名參加了駕駛證考試,在本次報(bào)名中,若這對(duì)夫妻參加科目二考試的原則為:通過(guò)科目二考試或者用完所有機(jī)會(huì)為止.(1)求這對(duì)夫妻在本次報(bào)名中參加科目二考試都不需要交補(bǔ)考費(fèi)的概率;(2)若這對(duì)夫妻前2次參加科目二考試均沒(méi)有通過(guò),記這對(duì)夫妻在本次報(bào)名中參加科目二考試產(chǎn)生的補(bǔ)考費(fèi)用之和為元,求的分布列與數(shù)學(xué)期望.20.(12分)已知函數(shù).(1)解不等式:;(2)求證:.21.(12分)設(shè)為拋物線(xiàn)的焦點(diǎn),,為拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn).(Ⅰ)若點(diǎn)在線(xiàn)段上,求的最小值;(Ⅱ)當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.22.(10分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
取,計(jì)算知錯(cuò)誤,根據(jù)不等式性質(zhì)知正確,得到答案.【題目詳解】,故,,故正確;取,計(jì)算知錯(cuò)誤;故選:.【題目點(diǎn)撥】本題考查了不等式性質(zhì),意在考查學(xué)生對(duì)于不等式性質(zhì)的靈活運(yùn)用.2、B【解題分析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【題目詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時(shí),檢驗(yàn)可得,A、C、D都不正確,故選:B.【題目點(diǎn)撥】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).3、C【解題分析】
由開(kāi)始,按照框圖,依次求出s,進(jìn)行判斷。【題目詳解】,故選C.【題目點(diǎn)撥】框圖問(wèn)題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。4、A【解題分析】
根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對(duì)任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對(duì)任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【題目點(diǎn)撥】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.5、C【解題分析】
求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù).【題目詳解】.故選:C【題目點(diǎn)撥】本題考查復(fù)數(shù)的代數(shù)形式的四則運(yùn)算,共軛復(fù)數(shù),屬于基礎(chǔ)題.6、B【解題分析】
根據(jù)拋物線(xiàn)定義得,即可解得結(jié)果.【題目詳解】因?yàn)?,所?故選B【題目點(diǎn)撥】本題考查拋物線(xiàn)定義,考查基本分析求解能力,屬基礎(chǔ)題.7、C【解題分析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【題目點(diǎn)撥】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.8、C【解題分析】
根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【題目詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【題目點(diǎn)撥】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.9、A【解題分析】
由已知,圓心M到漸近線(xiàn)的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線(xiàn)方程為,因?yàn)閳A被雙曲線(xiàn)的一條漸近線(xiàn)截得的弦長(zhǎng)為,所以圓心M到漸近線(xiàn)的距離為,故,所以離心率為.故選:A.【題目點(diǎn)撥】本題考查雙曲線(xiàn)離心率的問(wèn)題,涉及到直線(xiàn)與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.10、B【解題分析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線(xiàn)與直線(xiàn)共面.,同理易得,由異面直線(xiàn)所成的角的定義可知,異面直線(xiàn)與所成角為,然后再利用余弦定理求解.【題目詳解】如圖所示:連接,,,,由正方體的特征得,所以直線(xiàn)與直線(xiàn)共面.由正四棱柱的特征得,所以異面直線(xiàn)與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【題目點(diǎn)撥】本題主要考查異面直線(xiàn)的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.11、A【解題分析】
先化簡(jiǎn)已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【題目詳解】由題得,設(shè)x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個(gè)零點(diǎn),且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【題目點(diǎn)撥】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題.12、D【解題分析】
對(duì)于①,利用拋物線(xiàn)的定義,利用可判斷;對(duì)于②,設(shè)直線(xiàn)的方程為,與拋物線(xiàn)聯(lián)立,用坐標(biāo)表示直線(xiàn)與直線(xiàn)的斜率乘積,即可判斷;對(duì)于③,將代入拋物線(xiàn)的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線(xiàn)段的中垂線(xiàn)與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【題目詳解】如圖,設(shè)為拋物線(xiàn)的焦點(diǎn),以線(xiàn)段為直徑的圓為,則圓心為線(xiàn)段的中點(diǎn).設(shè),到準(zhǔn)線(xiàn)的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線(xiàn)的距離為,顯然,,三點(diǎn)不共線(xiàn),則.所以①正確.由題意可設(shè)直線(xiàn)的方程為,代入拋物線(xiàn)的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線(xiàn)與直線(xiàn)的斜率乘積為.所以②正確.將代入拋物線(xiàn)的方程可得,,從而,.根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性可知,,兩點(diǎn)關(guān)于軸對(duì)稱(chēng),所以過(guò)點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線(xiàn)段的中垂線(xiàn)與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【題目點(diǎn)撥】本題考查了拋物線(xiàn)的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
作出可行域,由得,平移直線(xiàn),數(shù)形結(jié)合可求的最大值.【題目詳解】作出可行域如圖所示由得,則是直線(xiàn)在軸上的截距.平移直線(xiàn),當(dāng)直線(xiàn)經(jīng)過(guò)可行域內(nèi)的點(diǎn)時(shí),最小,此時(shí)最大.解方程組,得,..故答案為:.【題目點(diǎn)撥】本題考查簡(jiǎn)單的線(xiàn)性規(guī)劃,屬于基礎(chǔ)題.14、②【解題分析】
根據(jù)新定義,結(jié)合實(shí)數(shù)的性質(zhì)即可判斷①②③,由定義求得比小的有理數(shù)個(gè)數(shù),即可確定④.【題目詳解】對(duì)于①,由定義可知,當(dāng)為有理數(shù)時(shí);當(dāng)為無(wú)理數(shù)時(shí),則值域?yàn)椋寓馘e(cuò)誤;對(duì)于②,因?yàn)橛欣頂?shù)的相反數(shù)還是有理數(shù),無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù),所以滿(mǎn)足,所以②正確;對(duì)于③,因?yàn)?,?dāng)為無(wú)理數(shù)時(shí),可以是有理數(shù),也可以是無(wú)理數(shù),所以③錯(cuò)誤;對(duì)于④,由定義可知,所以④錯(cuò)誤;綜上可知,正確的為②.故答案為:②.【題目點(diǎn)撥】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類(lèi)問(wèn)題的關(guān)鍵,屬于中檔題.15、【解題分析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【題目詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【題目點(diǎn)撥】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.16、-1【解題分析】
由題意,令即可得解.【題目詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解題分析】
(1)利用與的關(guān)系即可求解.(2)利用裂項(xiàng)求和法即可求解.【題目詳解】解析:(1)當(dāng)時(shí),;當(dāng),,可得,又∵當(dāng)時(shí)也成立,;(2),【題目點(diǎn)撥】本題主要考查了與的關(guān)系、裂項(xiàng)求和法,屬于基礎(chǔ)題.18、(1),;(2).【解題分析】
(1)先把直線(xiàn)和曲線(xiàn)的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;(2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【題目詳解】(1)直線(xiàn)的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:.轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線(xiàn)的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:,化為一般式得化為極坐標(biāo)方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【題目點(diǎn)撥】本題主要考查參數(shù)方程與普通方程的互化、直角坐標(biāo)方程與極坐標(biāo)方程的互化,熟記公式即可,屬于常考題型.19、(1);(2)見(jiàn)解析.【解題分析】
事件表示男學(xué)員在第次考科目二通過(guò),事件表示女學(xué)員在第次考科目二通過(guò)(其中)(1)這對(duì)夫妻是否通過(guò)科目二考試相互獨(dú)立,利用獨(dú)立事件乘法公式即可求得;(2)補(bǔ)考費(fèi)用之和為元可能取值為400,600,800,1000,1200,根據(jù)題意可求相應(yīng)的概率,進(jìn)而可求X的數(shù)學(xué)期望.【題目詳解】事件表示男學(xué)員在第次考科目二通過(guò),事件表示女學(xué)員在第次考科目二通過(guò)(其中).(1)事件表示這對(duì)夫妻考科目二都不需要交補(bǔ)考費(fèi)..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【題目點(diǎn)撥】本題以實(shí)際問(wèn)題為素材,考查離散型隨機(jī)變量的概率及期望,解題時(shí)要注意獨(dú)立事件概率公式的靈活運(yùn)用,屬于基礎(chǔ)題.20、(1);(2)見(jiàn)解析.【解題分析】
(1)代入得,分類(lèi)討論,解不等式即可;(2)利用絕對(duì)值不等式得性質(zhì),,,比較大小即可.【題目詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對(duì)于,可得.又,由于,所以.又由于,于是.所以.【題目點(diǎn)撥】本題考查了絕對(duì)值不等式得求解和恒成立問(wèn)題,考查了學(xué)生分類(lèi)討論,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 石材回填施工方案(3篇)
- 端午漂流活動(dòng)策劃方案(3篇)
- 紅星燒烤活動(dòng)方案策劃(3篇)
- 網(wǎng)咖施工方案(3篇)
- 草原撒種施工方案(3篇)
- 裝置圍欄施工方案(3篇)
- 貨運(yùn)應(yīng)急預(yù)案等級(jí)(3篇)
- 路燈墩施工方案(3篇)
- 遠(yuǎn)程裝修施工方案(3篇)
- 鉆孔修復(fù)施工方案(3篇)
- 2025北京陳經(jīng)綸中學(xué)高一9月月考物理(貫通班)試題含答案
- 中國(guó)鋁礦行業(yè)現(xiàn)狀分析報(bào)告
- 物業(yè)人員消防安全培訓(xùn)課件
- 2025年大學(xué)大四(預(yù)防醫(yī)學(xué))環(huán)境衛(wèi)生學(xué)階段測(cè)試試題及答案
- 文物安全保護(hù)責(zé)任書(shū)范本
- 產(chǎn)房護(hù)士長(zhǎng)年度工作業(yè)績(jī)總結(jié)與展望
- 【初中 歷史】2025-2026學(xué)年統(tǒng)編版八年級(jí)上學(xué)期歷史總復(fù)習(xí) 課件
- 2025~2026學(xué)年黑龍江省哈爾濱市道里區(qū)第七十六中學(xué)校九年級(jí)上學(xué)期9月培優(yōu)(四)化學(xué)試卷
- 2025年律師事務(wù)所黨支部書(shū)記年終述職報(bào)告
- 中國(guó)腦小血管病診治指南2025
- 中國(guó)零排放貨運(yùn)走廊創(chuàng)新實(shí)踐經(jīng)驗(yàn)、挑戰(zhàn)與建議
評(píng)論
0/150
提交評(píng)論