2023年遼寧省撫順市六校協(xié)作體數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第1頁
2023年遼寧省撫順市六校協(xié)作體數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁
2023年遼寧省撫順市六校協(xié)作體數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁
2023年遼寧省撫順市六校協(xié)作體數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁
2023年遼寧省撫順市六校協(xié)作體數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則()A. B. C. D.2.若圓的圓心在第一象限,則直線一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.化簡()A. B. C. D.4.函數(shù)的定義域為R,數(shù)列是公差為的等差數(shù)列,若,,則()A.恒為負(fù)數(shù) B.恒為正數(shù)C.當(dāng)時,恒為正數(shù);當(dāng)時,恒為負(fù)數(shù) D.當(dāng)時,恒為負(fù)數(shù);當(dāng)時,恒為正數(shù)5.?dāng)S兩顆均勻的骰子,則點數(shù)之和為5的概率等于()A. B. C. D.6.將函數(shù)的圖象向左平移個單位長度,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若對任意的均有成立,則的最小值為()A. B. C. D.7.函數(shù)f(x)=sin(ωx+π4)(ω>0)的圖象在[0,πA.(1,5) B.(1,+∞) C.[8.已知函數(shù)的最大值為,最小值為,則的值為()A. B. C. D.9.用數(shù)學(xué)歸納法證明這一不等式時,應(yīng)注意必須為()A. B., C., D.,10.已知平面平面,直線平面,直線平面,,在下列說法中,①若,則;②若,則;③若,則.正確結(jié)論的序號為()A.①②③ B.①② C.①③ D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.直線在軸上的截距是__________.12.每年五月最受七中學(xué)子期待的學(xué)生活動莫過于學(xué)生節(jié),在每屆學(xué)生節(jié)活動中,著七中校服的布偶“七中熊”尤其受同學(xué)和老師歡迎.已知學(xué)生會將在學(xué)生節(jié)當(dāng)天售賣“七中熊”,并且會將所獲得利潤全部捐獻(xiàn)于公益組織.為了讓更多同學(xué)知曉,學(xué)生會宣傳部需要前期在學(xué)校張貼海報宣傳,成本為250元,并且當(dāng)學(xué)生會向廠家訂制只“七中熊”時,需另投入成本,(元),.通過市場分析,學(xué)生會訂制的“七中熊”能全部售完.若學(xué)生節(jié)當(dāng)天,每只“七中熊”售價為70元,則當(dāng)銷量為______只時,學(xué)生會向公益組織所捐獻(xiàn)的金額會最大.13.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.14.在平面直角坐標(biāo)系中,角的頂點與原點重合,始邊與軸的非負(fù)半軸重合,終邊過點,則_______;_______.15.已知等比數(shù)列的公比為,關(guān)于的不等式有下列說法:①當(dāng)吋,不等式的解集②當(dāng)吋,不等式的解集為③當(dāng)>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說法正確的序號是_______.16.不等式的解集為_____________________。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在等比數(shù)列中,.(1)求的通項公式;(2)若,求數(shù)列的前項和.18.已知點,圓.(1)求過點且與圓相切的直線方程;(2)若直線與圓相交于,兩點,且弦的長為,求實數(shù)的值.19.平面四邊形中,.(1)若,求;(2)設(shè),若,求面積的最大值.20.已知數(shù)列的前項和,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.21.在已知數(shù)列中,,.(1)若數(shù)列中,,求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列、的前項和分別為、,是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由得,再計算即可.【詳解】,,所以故選D【點睛】本題考查了以數(shù)列的通項公式為載體求比值的問題,以及歸納推理的應(yīng)用,屬于基礎(chǔ)題.2、A【解析】

由圓心位置確定,的正負(fù),再結(jié)合一次函數(shù)圖像即可判斷出結(jié)果.【詳解】因為圓的圓心坐標(biāo)為,由圓心在第一象限可得,所以直線的斜率,軸上的截距為,所以直線不過第一象限.【點睛】本題主要考查一次函數(shù)的圖像,屬于基礎(chǔ)題型.3、A【解析】

減法先變?yōu)榧臃ǎ孟蛄康娜切畏▌t得到答案.【詳解】故答案選A【點睛】本題考查了向量的加減法,屬于簡單題.4、A【解析】

由函數(shù)的解析式可得函數(shù)是奇函數(shù),且為單調(diào)遞增函數(shù),分和兩種情況討論,分別利用函數(shù)的奇偶性和單調(diào)性,即可求解,得到結(jié)論.【詳解】由題意,因為函數(shù),根據(jù)冪函數(shù)和反正切函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞增函數(shù),且滿足,所以函數(shù)為奇函數(shù),因為數(shù)列是公差為的等差數(shù)列,且,則①當(dāng)時,由,可得,所以,所以,同理可得:,所以,②當(dāng)時,由,則,所以綜上可得,實數(shù)恒為負(fù)數(shù).故選:A.【點睛】本題主要考查了函數(shù)的單調(diào)性與奇偶性的應(yīng)用,以及等差數(shù)列的性質(zhì)的應(yīng)用,其中解答中合理利用等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.5、B【解析】

試題分析:擲兩顆均勻的骰子,共有36種基本事件,點數(shù)之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點:概率問題6、D【解析】

直接應(yīng)用正弦函數(shù)的平移變換和伸縮變換的規(guī)律性質(zhì),求出函數(shù)的解析式,對任意的均有,說明函數(shù)在時,取得最大值,得出的表達(dá)式,結(jié)合已知選出正確答案.【詳解】因為函數(shù)的圖象向左平移個單位長度,所以得到函數(shù),再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,所以,對任意的均有成立,所以在時,取得最大值,所以有而,所以的最小值為.【點睛】本題考查了正弦型函數(shù)的圖象變換規(guī)律、函數(shù)圖象的性質(zhì),考查了函數(shù)最大值的概念,正確求出變換后的函數(shù)解析式是解題的關(guān)鍵.7、C【解析】

結(jié)合正弦函數(shù)的基本性質(zhì),抓住只有一條對稱軸,建立不等式,計算范圍,即可.【詳解】當(dāng)x=π4時,wx+π4=π4w+π4,當(dāng)【點睛】考查了正弦函數(shù)的基本性質(zhì),關(guān)鍵抓住只有一條對稱軸,建立不等式,計算范圍,即可.8、B【解析】由解得為函數(shù)的定義域.令,消去得,圖像為橢圓的一部分,如下圖所示.,即直線,由圖可知,截距在點處取得最小值,在與橢圓相切的點處取得最大值.而,故最小值為.聯(lián)立,消去得,其判別式為零,即,解得(負(fù)根舍去),即,故.【點睛】本題主要考查含有兩個根號的函數(shù)怎樣求最大值和最小值.先用換元法,將原函數(shù)改寫成為一次函數(shù)的形式.然后利用和的關(guān)系,得到的可行域,本題中可行域為橢圓在第一象限的部分.然后利用,用截距的最大值和最小值來求函數(shù)的最大值和最小值.9、D【解析】

根據(jù)題意驗證,,時,不等式不成立,當(dāng)時,不等式成立,即可得出答案.【詳解】解:當(dāng),,時,顯然不等式不成立,當(dāng)時,不等式成立,故用數(shù)學(xué)歸納法證明這一不等式時,應(yīng)注意必須為,故選:.【點睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,屬于基礎(chǔ)題.10、D【解析】

由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【點睛】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

把直線方程化為斜截式,可得它在軸上的截距.【詳解】解:直線,即,故它在軸上的截距是4,故答案為:.【點睛】本題主要考查直線方程的幾種形式,屬于基礎(chǔ)題.12、200【解析】

由題意求得學(xué)生會向公益組織所捐獻(xiàn)的金額的函數(shù)解析式,再由對勾函數(shù)的性質(zhì)求得取最大值時的值即可.【詳解】由題意,設(shè)學(xué)生會向公益組織所捐獻(xiàn)的金額為,,由對勾函數(shù)的性質(zhì)知,在時取得最小值,所以時,取得最大值.故答案為:200【點睛】本題主要考查利用函數(shù)解決實際問題和對勾函數(shù)的性質(zhì),屬于基礎(chǔ)題.13、【解析】

要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應(yīng)用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.14、【解析】

根據(jù)三角函數(shù)的定義直接求得的值,即可得答案.【詳解】∵角終邊過點,,∴,,,∴.故答案為:;.【點睛】本題考查三角函數(shù)的定義,考查運算求解能力,屬于基礎(chǔ)題.15、③【解析】

利用等比數(shù)列的通項公式,解不等式后可得結(jié)論.【詳解】由題意,不等式變?yōu)?,即,若,則,當(dāng)或時解為,當(dāng)或時,解為,時,解為;若,則,當(dāng)或時解為,當(dāng)或時,解為,時,不等式無解.對照A、B、C、D,只有C正確.故選C.【點睛】本題考查等比數(shù)列的通項公式,考查解一元二次不等式,難點是解一元二次不等式,注意分類討論,本題中需對二次項系數(shù)分正負(fù),然后以要對兩根分大小,另外還有一個是相應(yīng)的一元二次方程是否有實數(shù)解分類(本題已經(jīng)有兩解,不需要這個分類).16、或【解析】

利用一元二次函數(shù)的圖象或轉(zhuǎn)化為一元一次不等式組解一元二次不等式.【詳解】由,或,所以或,不等式的解集為或.【點睛】本題考查解一元二次不等式,考查計算能力,屬于基本題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將已知條件化為和后,聯(lián)立解出和后即可得到通項公式;(2)根據(jù)錯位相減法可得結(jié)果.【詳解】(1)因為,所以解得故的通項公式為.(2)由(1)可得,則,①,②①-②得.所以故.【點睛】本題考查了等比數(shù)列通項公式基本量的計算,考查了錯位相減法求數(shù)列的和,屬于中檔題.18、(1)或;(2).【解析】

(1)考慮切線的斜率是否存在,結(jié)合直線與圓相切的的條件d=r,直接求解圓的切線方程即可.(2)利用圓的圓心距、半徑及半弦長的關(guān)系,列出方程,求解a即可.【詳解】(1)由圓的方程得到圓心,半徑.當(dāng)直線斜率不存在時,直線與圓顯然相切;當(dāng)直線斜率存在時,設(shè)所求直線方程為,即,由題意得:,解得,∴方程為,即.故過點且與圓相切的直線方程為或.(2)∵弦長為,半徑為2.圓心到直線的距離,∴,解得.【點睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查切線方程的求法,考查了垂徑定理的應(yīng)用,考查計算能力.19、(1);(2)【解析】

(1)法一:在中,利用余弦定理即可得到的長度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的長度;(2)在中,使用正弦定理可知是等邊三角形或直角三角形,分兩種情況分別找出面積表達(dá)式計算最大值即可.【詳解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等邊三角形或直角三角形.中,設(shè),由正弦定理得.若是等邊三角形,則.∵當(dāng)時,面積的最大值為;若是直角三角形,則.當(dāng)時,面積的最大值為;綜上所述,面積的最大值為.【點睛】本題主要考查正弦定理,余弦定理,面積公式,三角函數(shù)最值的相關(guān)應(yīng)用,綜合性強(qiáng),意在考查學(xué)生的計算能力,轉(zhuǎn)化能力,分析三角形的形狀并討論是解決本題的關(guān)鍵.20、(Ⅰ);(Ⅱ).【解析】

(1)本題可令求出的值,然后令求出,即可求出數(shù)列的通項公式;(2)首先可令,然后根據(jù)錯位相減法即可求出數(shù)列的前項和。【詳解】(1)當(dāng),,得.當(dāng)時,,,兩式相減,得,化簡得,所以數(shù)列是首項為、公比為的等比數(shù)列,所以。(2)由(1)可知,令,則①,兩邊同乘以公比,得到②,由①②得:所以?!军c睛】本題主要考查了數(shù)列通項的求法以及數(shù)列前項和的方法,求數(shù)列通項常用的方法有:累加法、累乘法、定義法、配湊法等;求數(shù)列前項和常用的方法有:錯位相減法、裂項相消法、公式法、分組求和法等,屬于中等題。21、(1)見解析;(2)存在,.【解析】

(1)利用等比數(shù)列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論