下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PAGE微專題51等差等比數(shù)列綜合問題一、基礎(chǔ)知識(shí):1、等差數(shù)列性質(zhì)與等比數(shù)列性質(zhì):等差數(shù)列SKIPIF1<0等比數(shù)列SKIPIF1<0遞推公式SKIPIF1<0SKIPIF1<0通項(xiàng)公式SKIPIF1<0SKIPIF1<0等差(比)中項(xiàng)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0等間隔抽項(xiàng)仍構(gòu)成等差數(shù)列仍構(gòu)成等比數(shù)列相鄰SKIPIF1<0項(xiàng)和SKIPIF1<0成等差數(shù)列SKIPIF1<0成等比數(shù)列2、等差數(shù)列與等比數(shù)列的互化:(1)若SKIPIF1<0為等差數(shù)列,SKIPIF1<0,則SKIPIF1<0成等比數(shù)列證明:設(shè)SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0為一個(gè)常數(shù)所以SKIPIF1<0成等比數(shù)列(2)若SKIPIF1<0為正項(xiàng)等比數(shù)列,SKIPIF1<0,則SKIPIF1<0成等差數(shù)列證明:設(shè)SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0為常數(shù)所以SKIPIF1<0成等差數(shù)列二、典型例題:例1:已知等比數(shù)列SKIPIF1<0中,若SKIPIF1<0成等差數(shù)列,則公比SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0思路:由“SKIPIF1<0成等差數(shù)列”可得:SKIPIF1<0,再由等比數(shù)列定義可得:SKIPIF1<0,所以等式變?yōu)椋篠KIPIF1<0解得SKIPIF1<0或SKIPIF1<0,經(jīng)檢驗(yàn)均符合條件答案:B例2:已知SKIPIF1<0是等差數(shù)列,且公差SKIPIF1<0不為零,其前SKIPIF1<0項(xiàng)和是SKIPIF1<0,若SKIPIF1<0成等比數(shù)列,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0思路:從“SKIPIF1<0成等比數(shù)列”入手可得:SKIPIF1<0,整理后可得:SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0符合要求答案:B小煉有話說:在等差數(shù)列(或等比數(shù)列)中,如果只有關(guān)于項(xiàng)的一個(gè)條件,則可以考慮將涉及的項(xiàng)均用SKIPIF1<0(或SKIPIF1<0)進(jìn)行表示,從而得到SKIPIF1<0(或SKIPIF1<0)的關(guān)系例3:已知等比數(shù)列SKIPIF1<0中的各項(xiàng)均為正數(shù),且SKIPIF1<0,則SKIPIF1<0_______________思路:由等比數(shù)列性質(zhì)可得:SKIPIF1<0,從而SKIPIF1<0,因?yàn)镾KIPIF1<0為等比數(shù)列,所以SKIPIF1<0為等差數(shù)列,求和可用等差數(shù)列求和公式:SKIPIF1<0答案:SKIPIF1<0例4:三個(gè)數(shù)成等比數(shù)列,其乘積為SKIPIF1<0,如果第一個(gè)數(shù)與第三個(gè)數(shù)各減SKIPIF1<0,則成等差數(shù)列,則這三個(gè)數(shù)為___________思路:可設(shè)這三個(gè)數(shù)為SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,而第一個(gè)數(shù)與第三個(gè)數(shù)各減2,新的等差數(shù)列為SKIPIF1<0,所以有:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或者SKIPIF1<0,SKIPIF1<0時(shí),這三個(gè)數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),這三個(gè)數(shù)為SKIPIF1<0答案:SKIPIF1<0小煉有話說:三個(gè)數(shù)成等比(或等差)數(shù)列時(shí),可以中間的數(shù)為核心。設(shè)為SKIPIF1<0(或SKIPIF1<0),這種“對稱”的設(shè)法便于充分利用條件中的乘積與和的運(yùn)算。例5:設(shè)SKIPIF1<0是等差數(shù)列,SKIPIF1<0為等比數(shù)列,其公比SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則有()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0或SKIPIF1<0思路:抓住SKIPIF1<0和SKIPIF1<0的序數(shù)和與SKIPIF1<0的關(guān)系,從而以此為入手點(diǎn)。由等差數(shù)列性質(zhì)出發(fā),SKIPIF1<0,因?yàn)镾KIPIF1<0,而SKIPIF1<0為等比數(shù)列,聯(lián)想到SKIPIF1<0與SKIPIF1<0有關(guān),所以利用均值不等式可得:SKIPIF1<0(SKIPIF1<0故SKIPIF1<0,均值不等式等號(hào)不成立)所以SKIPIF1<0即SKIPIF1<0答案:B小煉有話說:要熟悉等差數(shù)列與等比數(shù)列擅長的運(yùn)算,等差數(shù)列擅長加法,等比數(shù)列擅長乘積。所以在選擇入手點(diǎn)時(shí)可根據(jù)表達(dá)式的運(yùn)算進(jìn)行選擇。例6:數(shù)列SKIPIF1<0是各項(xiàng)均為正數(shù)的等比數(shù)列,SKIPIF1<0是等差數(shù)列,且SKIPIF1<0,則有()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0與SKIPIF1<0的大小不確定思路:比較大小的式子為和的形式,所以以SKIPIF1<0為入手點(diǎn),可得SKIPIF1<0,從而作差比較SKIPIF1<0,由SKIPIF1<0為正項(xiàng)等比數(shù)列可得:SKIPIF1<0,所以SKIPIF1<0答案:B小煉有話說:要熟悉等差數(shù)列與等比數(shù)列擅長的運(yùn)算,等差數(shù)列擅長加法,等比數(shù)列擅長乘積。所以在選擇入手點(diǎn)時(shí)可根據(jù)表達(dá)式的運(yùn)算進(jìn)行選擇。例7:設(shè)數(shù)列SKIPIF1<0是以2為首項(xiàng),1為公差的等差數(shù)列,SKIPIF1<0是以1為首項(xiàng),2為公比的等比數(shù)列,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0思路:求和看通項(xiàng),考慮SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0答案:A例8:(2011,江蘇)設(shè)SKIPIF1<0,其中SKIPIF1<0成公比為SKIPIF1<0的等比數(shù)列,SKIPIF1<0成公差為SKIPIF1<0的等差數(shù)列,則SKIPIF1<0的最小值是___________思路:可知等比數(shù)列為SKIPIF1<0,等差數(shù)列為SKIPIF1<0,依題意可得SKIPIF1<0①,若要SKIPIF1<0最小,則SKIPIF1<0要達(dá)到最小,所以在①中,每一項(xiàng)都要盡量取較小的數(shù),即讓不等式中的等號(hào)成立。所以SKIPIF1<0,所以SKIPIF1<0,驗(yàn)證當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,①式為SKIPIF1<0,滿足題意。答案:SKIPIF1<0例9:已知等差數(shù)列SKIPIF1<0的公差SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,等比數(shù)列SKIPIF1<0是公比為SKIPIF1<0的正整數(shù),前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0是正整數(shù),則SKIPIF1<0等于()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0解:本題SKIPIF1<0的通項(xiàng)公式易于求解,由SKIPIF1<0可得SKIPIF1<0,而處理SKIPIF1<0通項(xiàng)公式的關(guān)鍵是要解出SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0可取的值為SKIPIF1<0,可得只有SKIPIF1<0才有符合條件的SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0答案:D例10:SKIPIF1<0個(gè)正數(shù)排成SKIPIF1<0行SKIPIF1<0列(如表),其中每行數(shù)都成等差數(shù)列,每列數(shù)都成等比數(shù)列,且所有的公比都相同,已知SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簾門更換合同范本
- 建材售后合同范本
- 租賃墳地合同范本
- 工程運(yùn)費(fèi)合同范本
- 繡花外加工協(xié)議書
- 電腦配送合同范本
- 房屋合建設(shè)協(xié)議書
- 糧食代烘干協(xié)議書
- 給商城供貨協(xié)議書
- 租賃轉(zhuǎn)包合同范本
- 畫法幾何知到章節(jié)答案智慧樹2023年浙江大學(xué)
- 少年宮剪紙社團(tuán)活動(dòng)記錄
- 生命科學(xué)前沿技術(shù)智慧樹知到答案章節(jié)測試2023年蘇州大學(xué)
- GB/T 16102-1995車間空氣中硝基苯的鹽酸萘乙二胺分光光度測定方法
- GB/T 15171-1994軟包裝件密封性能試驗(yàn)方法
- 外科護(hù)理學(xué)期末試卷3套18p
- 人員出車次數(shù)統(tǒng)計(jì)表
- 飛行區(qū)培訓(xùn)題庫
- 新蘇教版2022-2023六年級(jí)科學(xué)上冊《專項(xiàng)學(xué)習(xí):像工程師那樣》課件
- 幕墻裝飾施工組織設(shè)計(jì)
- 科傻軟件使用說明書
評論
0/150
提交評論