版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市十二校2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.?dāng)?shù)列1,6,15,28,45,...中的每一項都可用如圖所示的六邊形表示出來,故稱它們?yōu)榱呅螖?shù),那么第10個六邊形數(shù)為()A.153 B.190C.231 D.2762.設(shè)分別為圓和橢圓上的點(diǎn),則兩點(diǎn)間的最大距離是A. B.C. D.3.已知等比數(shù)列{an}中,,,則()A. B.1C. D.44.記為等差數(shù)列的前n項和,有下列四個等式,甲:;乙:;丙:;?。海绻挥幸粋€等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁5.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內(nèi)的一動點(diǎn),若,則動點(diǎn)的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上6.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.7.點(diǎn)M在圓上,點(diǎn)N在直線上,則|MN|的最小值是()A. B.C. D.18.設(shè)是等比數(shù)列,則“對于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知拋物線的焦點(diǎn)是雙曲線的一個焦點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.10.直線分別交坐標(biāo)軸于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),三角形OAB的內(nèi)切圓上有動點(diǎn)P,則的最小值為()A.16 B.18C.20 D.2211.已知直線過點(diǎn)且與直線平行,則直線方程為()A. B.C. D.12.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長為2,E、F分別是棱、的中點(diǎn),點(diǎn)P為底面ABCD內(nèi)(包括邊界)的一動點(diǎn),若直線與平面BEF無公共點(diǎn),則點(diǎn)P的軌跡長度為______.14.已知點(diǎn)是橢圓上的一點(diǎn),分別為橢圓的左、右焦點(diǎn),已知=120°,且,則橢圓的離心率為___________.15.如圖,四邊形和均為正方形,它們所在的平面互相垂直,動點(diǎn)在線段上,、分別為、的中點(diǎn).設(shè)異面直線與所成的角為,則的最大值為____16.某位同學(xué)參加物理、化學(xué)、政治科目的等級考,依據(jù)以往成績估算該同學(xué)在物理、化學(xué)、政治科目等級中達(dá)的概率分別為假設(shè)各門科目考試的結(jié)果互不影響,則該同學(xué)等級考至多有1門學(xué)科沒有獲得的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設(shè)直線y=kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且<e≤,求k的取值范圍.18.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點(diǎn),使得二面角的余弦值?若存在,指出點(diǎn)的位置;若不存在,說明理由.19.(12分)已知橢圓與直線相切,點(diǎn)G為橢圓上任意一點(diǎn),,,且的最大值為3(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同兩點(diǎn)E,F(xiàn),點(diǎn)O為坐標(biāo)原點(diǎn),且,當(dāng)?shù)拿娣e取最大值時,求的取值范圍20.(12分)命題:函數(shù)有意義;命題:實數(shù)滿足.(1)當(dāng)且為真時,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.21.(12分)已知等比數(shù)列的首項,公比,在中每相鄰兩項之間都插入3個正數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個新的等比數(shù)列.(1)求數(shù)列的通項公式;(2)記數(shù)列前n項的乘積為,試問:是否有最大值?如果是,請求出此時n以及最大值;若不是,請說明理由.22.(10分)已知直線l過點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】細(xì)心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形可知,,,,,,,據(jù)此即可求解.【詳解】由題意知,數(shù)列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:B【點(diǎn)睛】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規(guī)律是求解本題的關(guān)鍵;屬于中檔題、探索型試題.2、D【解析】轉(zhuǎn)化為圓心到橢圓上點(diǎn)的距離的最大值加(半徑).【詳解】設(shè),圓心為,則,當(dāng)時,取到最大值,∴最大值為故選:D.【點(diǎn)睛】本題考查圓上點(diǎn)與橢圓上點(diǎn)的距離的最值問題,解題關(guān)鍵是圓上的點(diǎn)轉(zhuǎn)化為圓心,利用圓心到動點(diǎn)距離的最值加(或減)半徑得出結(jié)論3、D【解析】設(shè)公比為,然后由已知條件結(jié)合等比數(shù)列的通項公式列方程求出,從而可求出,【詳解】設(shè)公比為,因為等比數(shù)列{an}中,,,所以,所以,解得,所以,得故選:D4、D【解析】分別假設(shè)甲、乙、丙、丁不成立,驗證得到答案【詳解】設(shè)數(shù)列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.5、A【解析】根據(jù)題意,得到兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,設(shè),由題意,得到,,再由得到,求出點(diǎn)的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立如圖所示的空間直角坐標(biāo)系,因為底面是邊長為的正方形,則,,因為為底面內(nèi)的一動點(diǎn),所以可設(shè),因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點(diǎn)的軌跡在圓上.故選:A.【點(diǎn)睛】本題主要考查立體幾何中的軌跡問題,靈活運(yùn)用空間向量的方法求解即可,屬于??碱}型.6、A【解析】求出函數(shù)圖象的對稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因為,所以,,所以,函數(shù)圖象的對稱中心為,將函數(shù)的圖象向右平移個單位,再將所得圖象向下平移個單位長度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A7、C【解析】根據(jù)題意可知圓心,又由于線外一點(diǎn)到已知直線的垂線段最短,結(jié)合點(diǎn)到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.8、C【解析】根據(jù)嚴(yán)格遞增數(shù)列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴(yán)格遞增數(shù)列,顯然,所以“對于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”必要條件;對任意的正整數(shù)n都成立,所以中不可能同時含正項和負(fù)項,,即,或,即,當(dāng)時,有,即,是嚴(yán)格遞增數(shù)列,當(dāng)時,有,即,是嚴(yán)格遞增數(shù)列,所以“對于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”充分條件故選:C9、B【解析】根據(jù)拋物線和寫出焦點(diǎn)坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點(diǎn)為,雙曲線的,,所以,所以雙曲線的右焦點(diǎn)為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.10、B【解析】由題意,求出內(nèi)切圓的半徑和圓心坐標(biāo),設(shè),則,由表示內(nèi)切圓上的動點(diǎn)P到定點(diǎn)的距離的平方,從而即可求解最小值.【詳解】解:因為直線分別交坐標(biāo)軸于A,B兩點(diǎn),所以設(shè),則,因為,所以三角形OAB的內(nèi)切圓半徑,內(nèi)切圓圓心為,所以內(nèi)切圓的方程為,設(shè),則,因為表示內(nèi)切圓上的動點(diǎn)P到定點(diǎn)的距離的平方,且在內(nèi)切圓內(nèi),所以,所以,,即的最小值為18,故選:B.11、C【解析】由題意,直線的斜率為,利用點(diǎn)斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點(diǎn),所以直線的方程為,即,故選:C.12、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取BC中點(diǎn)G,證明平面平面確定點(diǎn)P的軌跡,再計算作答.【詳解】在正方體中,取BC中點(diǎn)G,連接,如圖,因E、F分別是棱、的中點(diǎn),則,而平面,平面,則有平面,因,則,而,則有四邊形為平行四邊形,有,又平面,平面,于是得平面,而,平面,因此,平面平面,即線段AG是點(diǎn)P在底面ABCD內(nèi)的軌跡,,所以點(diǎn)P的軌跡長度為.故答案為:14、【解析】設(shè),由余弦定理知,所以,故填.15、【解析】如圖所示,建立空間直角坐標(biāo)系,設(shè),,,,,由向量法可得,令,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可求得的最大值,從而可得答案【詳解】解:由題意,根據(jù)已知條件,直線AB,AD,AQ兩兩互相垂直,所以建立如圖所示空間直角坐標(biāo)系不妨設(shè),則,0,,,0,,,1,,設(shè),,,,,,,,,,,令,,則,函數(shù)在上單調(diào)遞減,時,函數(shù)取得最大值,的最大值為故答案為:16、【解析】考慮3門或者2門兩種情況,計算概率得到答案.【詳解】.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)右焦點(diǎn)為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點(diǎn),且坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結(jié)合韋達(dá)定理求解.【詳解】(1)由題意得c=3,,所以.又因為a2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設(shè)A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依題意易知,OM⊥ON,四邊形OMF2N為矩形,所以AF2⊥BF2.因為(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,將其整理為k2==-1-.因為<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問的關(guān)鍵是由O在以MN為直徑的圓上,即OM⊥ON,得到四邊形OMF2N為矩形,推出AF2⊥BF2,結(jié)合韋達(dá)定理得出斜率k與離心率e的關(guān)系.18、(1);(2)存在,為上靠近點(diǎn)的三等分點(diǎn)【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo)以及平面的一個法向量,計算即可求解;(2)假設(shè)線段上存在點(diǎn)符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,如圖所示:則,,,.不妨設(shè)平面的一個法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點(diǎn),使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點(diǎn)滿足條件,為上靠近點(diǎn)的三等分點(diǎn)【點(diǎn)睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.19、(1)(2)【解析】(1)設(shè)點(diǎn),根據(jù)題意,得到,根據(jù)向量數(shù)量積的坐標(biāo)表示,得到,根據(jù)其最小值,求出,即可得出橢圓方程;(2)設(shè),,,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理,由弦長公式,以及點(diǎn)到直線距離公式,求出的面積的最值,得到;得出點(diǎn)的軌跡為橢圓,且點(diǎn)為橢圓的左、右焦點(diǎn),記,則,得到,根據(jù)對勾函數(shù)求出最值.【小問1詳解】設(shè)點(diǎn),由題意知,所以:,則,當(dāng)時,取得最大值,即,故橢圓C的標(biāo)準(zhǔn)方程是【小問2詳解】設(shè),,,則由得,,點(diǎn)O到直線l的距離,對用均值不等式,則:當(dāng)且僅當(dāng)即,①,S取得最大值.此時,,,即,代入①式整理得,即點(diǎn)M的軌跡為橢圓且點(diǎn),為橢圓的左、右焦點(diǎn),即記,則于是:,由對勾函數(shù)的性質(zhì):當(dāng)時,,且,故的取值范圍為20、(1);(2)【解析】(1)首先將命題,化簡,然后由為真可得,均為真,取交集即可求出實數(shù)的取值范圍;(2)將是的充分不必要條件轉(zhuǎn)化為是的必要不充分條件,進(jìn)而將問題轉(zhuǎn)化為,從而求出實數(shù)的取值范圍【詳解】(1)若命題為真,則,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職(道路橋梁工程技術(shù))橋梁設(shè)計試題及答案
- 2026年醫(yī)學(xué)檢驗綜合(多項目檢測)試題及答案
- 2025年中職汽車運(yùn)用與維修(節(jié)能汽車基礎(chǔ))試題及答案
- 教堂介紹教學(xué)課件
- 中國科學(xué)技術(shù)大學(xué)素材
- 養(yǎng)老院老人生活照料規(guī)范制度
- 養(yǎng)老院老人健康監(jiān)測制度
- 養(yǎng)老院定期體檢制度
- 養(yǎng)老院健康講座制度
- 2024年湖北省中考數(shù)學(xué)真題及答案解析
- 混凝土生產(chǎn)過程監(jiān)控方案
- 2026北京市中央廣播電視總臺招聘124人參考題庫附答案
- 十五五規(guī)劃綱要解讀:循環(huán)經(jīng)濟(jì)模式推廣
- 2026年山西警官職業(yè)學(xué)院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 2026年農(nóng)夫山泉-AI-面試題目及答案
- 2026凱翼汽車全球校園招聘(公共基礎(chǔ)知識)綜合能力測試題附答案
- 山東省威海市環(huán)翠區(qū)2024-2025學(xué)年一年級上學(xué)期1月期末數(shù)學(xué)試題
- 2025年手術(shù)室護(hù)理實踐指南知識考核試題及答案
- 外貿(mào)公司采購專員績效考核表
- 胸腺瘤伴重癥肌無力課件
- 十五五安全生產(chǎn)規(guī)劃思路
評論
0/150
提交評論