2023-2024學年河北省秦皇島市盧龍縣數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023-2024學年河北省秦皇島市盧龍縣數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023-2024學年河北省秦皇島市盧龍縣數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023-2024學年河北省秦皇島市盧龍縣數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023-2024學年河北省秦皇島市盧龍縣數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河北省秦皇島市盧龍縣數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法錯誤的是()A.球體是旋轉(zhuǎn)體 B.圓柱的母線垂直于其底面C.斜棱柱的側(cè)面中沒有矩形 D.用正棱錐截得的棱臺叫做正棱臺2.在軸上的截距分別是,4的直線方程是A. B.C. D.3.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.若,則值為()A. B.C. D.75.已知函數(shù),,則的零點所在的區(qū)間是A. B.C. D.6.軸截面是正三角形的圓錐稱作等邊圓錐,則等邊圓錐的側(cè)面積是底面積的A.4倍 B.3倍C.倍 D.2倍7.已知點P3,-4是角α的終邊上一點,則sinA.-75C.15 D.8.設函數(shù),則使成立的的取值范圍是A. B.C. D.9.已知點M在曲線上,點N在曲線:上,則|MN|的最小值為()A.1 B.2C.3 D.410.已知全集,集合,,則?U(A∪B)=A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.筒車亦稱為“水轉(zhuǎn)筒車”,一種以流水為動力,取水灌田的工具,筒車發(fā)明于隋而盛于唐,距今已有1000多年的歷史.如圖,假設在水流量穩(wěn)定的情況下,一個半徑為3米的筒車按逆時針方向做每6分鐘轉(zhuǎn)一圈的勻速圓周運動,筒車的軸心O距離水面BC的高度為1.5米,設筒車上的某個盛水筒P的切始位置為點D(水面與筒車右側(cè)的交點),從此處開始計時,t分鐘時,該盛水筒距水面距離為,則___________12.設函數(shù),若函數(shù)在上的最大值為M,最小值為m,則______13.函數(shù)恒過定點為__________14.已知角的終邊上有一點,則________.15.寫出一個同時具有下列性質(zhì)的函數(shù)___________.①是奇函數(shù);②在上為單調(diào)遞減函數(shù);③.16.函數(shù)fx=三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知角的終邊經(jīng)過點,,,求的值.18.已知,(1)求(2)設與的夾角為,求19.已知圓的方程為:(1)求圓的圓心所在直線方程一般式;(2)若直線被圓截得弦長為,試求實數(shù)的值;(3)已知定點,且點是圓上兩動點,當可取得最大值為時,求滿足條件的實數(shù)的值20.(1)化簡:;(2)已知,求的值.21.已知.(1)化簡;(2)若是第三象限角,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用空間幾何體的結構特征可得.【詳解】由旋轉(zhuǎn)體的概念可知,球體是旋轉(zhuǎn)體,故A正確;圓柱的母線平行于圓柱的軸,垂直于其底面,故B正確;斜棱柱的側(cè)面中可能有矩形,故C錯誤;用正棱錐截得的棱臺叫做正棱臺,故D正確.故選:C.2、B【解析】根據(jù)直線方程的截距式寫出直線方程即可【詳解】根據(jù)直線方程的截距式寫出直線方程,化簡得,故選B.【點睛】本題考查直線的截距式方程,屬于基礎題3、C【解析】根據(jù)三角函數(shù)表,在三角形中,當時,即可求解【詳解】在三角形中,,故在三角形中,“”是“”的充分必要條件故選:C【點睛】本題考查充要條件的判斷,屬于基礎題4、B【解析】根據(jù)兩角和的正切公式,結合同角的三角函數(shù)關系式中商關系進行求解即可.【詳解】由,所以,故選:B5、C【解析】由題意結合零點存在定理確定的零點所在的區(qū)間即可.【詳解】由題意可知函數(shù)在上單調(diào)遞減,且函數(shù)為連續(xù)函數(shù),注意到,,,,結合函數(shù)零點存在定理可得的零點所在的區(qū)間是.本題選擇C選項.【點睛】應用函數(shù)零點存在定理需要注意:一是嚴格把握零點存在性定理的條件;二是連續(xù)函數(shù)在一個區(qū)間的端點處函數(shù)值異號是這個函數(shù)在這個區(qū)間上存在零點的充分條件,而不是必要條件;三是函數(shù)f(x)在(a,b)上單調(diào)且f(a)f(b)<0,則f(x)在(a,b)上只有一個零點.6、D【解析】由題意,求出圓錐的底面面積,側(cè)面面積,即可得到比值【詳解】圓錐的軸截面是正三角形,設底面半徑為r,則它的底面積為πr2;圓錐的側(cè)面積為:2rπ?2r=2πr2;圓錐的側(cè)面積是底面積的2倍故選D【點睛】本題是基礎題,考查圓錐的特征,底面面積,側(cè)面積的求法,考查計算能力7、A【解析】利用三角函數(shù)的定義可求得結果.【詳解】由三角函數(shù)的定義可得sinα-故選:A.8、A【解析】,定義域為,∵,∴函數(shù)為偶函數(shù),當時,函數(shù)單調(diào)遞增,根據(jù)偶函數(shù)性質(zhì)可知:得成立,∴,∴,∴的范圍為故答案為A.考點:抽象函數(shù)的不等式.【思路點晴】本題考查了偶函數(shù)的性質(zhì)和利用偶函數(shù)圖象的特點解決實際問題,屬于基礎題型,應牢記.根據(jù)函數(shù)的表達式可知函數(shù)為偶函數(shù),根據(jù)初等函數(shù)的性質(zhì)判斷函數(shù)在大于零的單調(diào)性為遞增,根據(jù)偶函數(shù)關于原點對稱可知,距離原點越遠的點,函數(shù)值越大,把可轉(zhuǎn)化為,解絕對值不等式即可9、B【解析】根據(jù)圓的一般方程得出圓的標準方程,并且得圓的圓心和半徑,計算兩圓圓心的距離后就可以求解.【詳解】由題意知:圓:,的坐標是,半徑是,圓:,的坐標是,半徑是.所以,因此兩圓相離,所以最小值為.故選:B10、C【解析】,,,?U(A∪B)=故答案為C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)圖象及所給條件確定振幅、周期、,再根據(jù)時求即可得解.【詳解】由題意知,,,,當時,,,即,,所以,故答案為:12、2【解析】令,證得為奇函數(shù),從而可得在的最大值和最小值之和為0,進而可求出結果.【詳解】設,定義域為,則,所以,即,所以為奇函數(shù),所以在的最大值和最小值之和為0,令,則因為,所以函數(shù)的最大值為,最小值為,則,∴故答案為:2.13、【解析】當時,,故恒過點睛:函數(shù)圖象過定點問題,主要有指數(shù)函數(shù)過定點,對數(shù)函數(shù)過定點,冪函數(shù)過點,注意整體思維,整體賦值求解14、【解析】直接根據(jù)任意角的三角函數(shù)的定義計算可得;【詳解】解:因為角的終邊上有一點,則所以,所以故答案為:【點睛】考查任意角三角函數(shù)的定義的應用,考查計算能力,屬于基礎題15、(答案不唯一,符合條件即可)【解析】根據(jù)三個性質(zhì)結合圖象可寫出一個符合條件的函數(shù)解析式【詳解】是奇函數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)不具有奇偶性,冪函數(shù)具有奇偶性,又在上為單調(diào)遞減函數(shù),同時,故可選,且為奇數(shù),故答案為:16、0【解析】先令t=cosx,則t∈-1,1,再將問題轉(zhuǎn)化為關于【詳解】解:令t=cosx,則則f(t)=t則函數(shù)f(t)在-1,1上為減函數(shù),則f(t)即函數(shù)y=cos2x-2故答案為:0.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、.【解析】利用三角函數(shù)的定義可得,進而可求,利用同角關系式可求,再利用兩角和的正切公式即得.【詳解】∵角的終邊經(jīng)過點,∴,,∵,,∴,,∴18、(1)1;(2)【解析】分析:(1)直接利用數(shù)量積的坐標表示求的值.(2)直接利用向量的夾角公式求.詳解:(1);(2)∵,,∴,∴點睛:(1)本題主要考查向量的數(shù)量積和向量的夾角,意在考查學生對這些基礎知識的掌握水平和基本的運算能力.(2)向量的夾角公式為.19、(1);(2)或;(3).【解析】(1)配方得圓的標準方程,可得圓心坐標滿足,消去可得圓心所在直線方程;(2)由弦長、半徑結合勾股定理求出圓心到直線的距離,再由點到直線距離公式求得圓心到直線的距離,兩者相等可解得m;(3)根據(jù)題意判斷出四邊形PACB是正方形,進而求得,由兩點間距離公式可求得m【小問1詳解】由已知圓C的方程為:,所以圓心為,所以圓心在直線方程為.【小問2詳解】(2)由已知r=2,又弦長為,所以圓心到直線距離,所以,解得或.【小問3詳解】由可取得最大值為可知點為圓外一點,所以,當PA、PB為圓的兩條切線時,∠APB取最大值.又,所以四邊形PACB為正方形,由r=2得到,即P到圓心C的距離,解得.20、(1)-1(2)-3【解析】(1)根號下是,開方后注意,而,從而所求值為.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論