版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年貴州省“陽光校園·空中黔課”階段性檢測數(shù)學(xué)高一上期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某學(xué)校在數(shù)學(xué)聯(lián)賽的成績中抽取100名學(xué)生的筆試成績,統(tǒng)計(jì)后得到如圖所示的分布直方圖,這100名學(xué)生成績的中位數(shù)估值為A.80 B.82C.82.5 D.842.已知直線是函數(shù)圖象的一條對稱軸,的最小正周期不小于,則的一個(gè)單調(diào)遞增區(qū)間為()A. B.C. D.3.已知,若,則()A.或 B.3或5C.或5 D.34.若命題“,”是假命題,則實(shí)數(shù)的取值范圍為()A. B.C. D.5.已知函數(shù)一部分圖象如圖所示,如果,,,則()A. B.C. D.6.已知圓(,為常數(shù))與.若圓心與圓心關(guān)于直線對稱,則圓與的位置關(guān)系是()A.內(nèi)含 B.相交C.內(nèi)切 D.相離7.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生人數(shù)是高一學(xué)生人數(shù)的兩倍,高二學(xué)生人數(shù)比高一學(xué)生人數(shù)多300人,現(xiàn)在用分層抽樣的方法抽取的樣本容量為35,則應(yīng)抽取高一學(xué)生人數(shù)為()A.8 B.11C.16 D.108.已知點(diǎn)在第三象限,則角的終邊位置在()A.第一象限 B.第二象限C.第三象限 D.第四象限9.若,都為正實(shí)數(shù),,則的最大值是()A. B.C. D.10.根據(jù)表格中的數(shù)據(jù),可以判定函數(shù)的一個(gè)零點(diǎn)所在的區(qū)間為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)定義域?yàn)開___.12.把物體放在冷空氣中冷卻,如果物體原來的溫度是θ1,空氣的溫度是θ0℃,那么t后物體的溫度θ(單位:)可由公式(k為正常數(shù))求得.若,將55的物體放在15的空氣中冷卻,則物體冷卻到35所需要的時(shí)間為___________.13.若扇形的面積為9,圓心角為2弧度,則該扇形的弧長為______14.若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則實(shí)數(shù)的取值范圍是_______.15.計(jì)算__________16.已知函數(shù)(為常數(shù))的一條對稱軸為,若,且滿足,在區(qū)間上是單調(diào)函數(shù),則的最小值為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某企業(yè)采用新工藝,把企業(yè)生產(chǎn)中排放的二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y200x+80000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補(bǔ)貼多少元才能使該單位不虧損?18.已知函數(shù)f(x)=lnx+2x,若f(x2-4)<2,求實(shí)數(shù)x的取值范圍.19.已知,,且函數(shù)有奇偶性,求a,b的值20.已知函數(shù)是定義域?yàn)镽的奇函數(shù).(1)求t的值,并寫出的解析式;(2)判斷在R上的單調(diào)性,并用定義證明;(3)若函數(shù)在上的最小值為,求k的值.21.已知函數(shù).(1)若且的最小值為,求不等式的解集;(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】中位數(shù)的左邊和右邊的直方圖的面積相等,由此可以估計(jì)中位數(shù)的值,,中位數(shù)為,故選B.2、B【解析】由周期得出的范圍,再由對稱軸方程求得值,然后由正弦函數(shù)性質(zhì)確定單調(diào)性【詳解】根據(jù)題意,,所以,,,所以,,故,所以.令,,得,.令,得的一個(gè)單調(diào)遞增區(qū)間為.故選:B3、D【解析】根據(jù)分段函數(shù)的定義,分與兩種情況討論即可求解.【詳解】解:由題意,當(dāng)時(shí),,解得或(舍去);當(dāng),,解得(舍去);綜上,.故選:D.4、A【解析】由題意知原命題為假命題,故命題的否定為真命題,再利用,即可得到答案.【詳解】由題意可得“”是真命題,故或.故選:A.5、C【解析】先根據(jù)函數(shù)的最大值和最小值求得和,然后利用圖象求得函數(shù)的周期,求得,最后根據(jù)時(shí)取最大值,求得【詳解】解:如圖根據(jù)函數(shù)的最大值和最小值得求得函數(shù)的周期為,即當(dāng)時(shí)取最大值,即故選C【點(diǎn)睛】本題主要考查了由的部分圖象確定其解析式.考查了學(xué)生基礎(chǔ)知識的運(yùn)用和圖象觀察能力6、B【解析】由對稱求出,再由圓心距與半徑關(guān)系得圓與圓的位置關(guān)系【詳解】,,半徑為,關(guān)于直線的對稱點(diǎn)為,即,所以,圓半徑為,,又,所以兩圓相交故選:B7、A【解析】先求出高一學(xué)生的人數(shù),再利用抽樣比,即可得到答案;【詳解】設(shè)高一學(xué)生的人數(shù)為人,則高二學(xué)生人數(shù)為,高三學(xué)生人數(shù)為,,,故選:A8、B【解析】由所在的象限有,即可判斷所在的象限.【詳解】因?yàn)辄c(diǎn)在第三象限,所以,由,可得角的終邊在第二、四象限,由,可得角的終邊在第二、三象限或軸非正半軸上,所以角終邊位置在第二象限,故選:B.9、D【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因?yàn)?,都為正?shí)數(shù),,所以,當(dāng)且僅當(dāng),即時(shí),取最大值.故選:D10、D【解析】函數(shù),滿足.由零點(diǎn)存在定理可知函數(shù)的一個(gè)零點(diǎn)所在的區(qū)間為.故選D.點(diǎn)睛:函數(shù)的零點(diǎn)問題,常根據(jù)零點(diǎn)存在性定理來判斷,如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b)使得f(c)=0,
這個(gè)c也就是方程f(x)=0的根.由此可判斷根所在區(qū)間.二、填空題:本大題共6小題,每小題5分,共30分。11、∪【解析】根據(jù)題意列出滿足的條件,解不等式組【詳解】由題意得,即,解得或,從而函數(shù)的定義域?yàn)椤?故答案為:∪.12、2【解析】將數(shù)據(jù),,,代入公式,得到,解指數(shù)方程,即得解【詳解】將,,,代入得,所以,,所以,即.故答案為:213、6【解析】先由已知求出半徑,從而可求出弧長【詳解】設(shè)扇形所在圓的半徑為,因?yàn)樯刃蔚拿娣e為9,圓心角為2弧度,所以,得,所以該扇形的弧長為,故答案為:614、【解析】先求出拋物線的對稱軸方程,然后由題意可得,解不等式可求出的取值范圍【詳解】解:函數(shù)的對稱軸方程為,因?yàn)楹瘮?shù)在區(qū)間上是單調(diào)遞增函數(shù),所以,解得,故答案為:15、5【解析】化簡,故答案為.16、【解析】根據(jù)是的對稱軸可取得最值,即可求出的值,進(jìn)而可得的解析式,再結(jié)合對稱中心的性質(zhì)即可求解.【詳解】因?yàn)槭堑膶ΨQ軸,所以,化簡可得:,即,所以,有,,可得,,因?yàn)?,且滿足,在區(qū)間上是單調(diào)函數(shù),又因?yàn)閷ΨQ中心,所以,當(dāng)時(shí),取得最小值.故答案為:.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)400;(2)不能獲利,至少需要補(bǔ)貼35000元.【解析】(1)每月每噸的平均處理成本為,利用基本不等式求解即得最低成本;(2)寫出該單位每月的獲利f(x)關(guān)于x的函數(shù),整理并利用二次函數(shù)的單調(diào)性求出最值即可作答.【小問1詳解】由題意可知:,每噸二氧化碳的平均處理成本為:,當(dāng)且僅當(dāng),即時(shí),等號成立,∴該單位每月處理量為400噸時(shí),每噸平均處理成本最低;【小問2詳解】該單位每月的獲利:,因,函數(shù)在區(qū)間上單調(diào)遞減,從而得當(dāng)時(shí),函數(shù)取得最大值,即,所以,該單位每月不能獲利,國家至少需要補(bǔ)貼35000元才能使該單位不虧損.18、或【解析】利用函數(shù)單調(diào)性解決抽象不等式.試題解析:因?yàn)楹瘮?shù)f(x)=lnx+2x在定義域上單調(diào)遞增,且f(1)=ln1+2=2,所以由f(x2-4)<2得,f(x2-4)<f(1),所以0<x2-4<1,解得-<x<-2或2<x<.19、為奇函數(shù),,【解析】由函數(shù)奇偶性的定義列方程求解即可【詳解】若為奇函數(shù),則,所以恒成立,即,所以恒成立,所以,解得,所以當(dāng)為奇函數(shù)時(shí),,若為偶函數(shù),則,所以恒成立,得,得,不合題意,所以不可能是偶函數(shù),綜上,為奇函數(shù),,20、(1)或,;(2)R上單調(diào)遞增,證明見解析;(3)【解析】(1)是定義域?yàn)镽的奇函數(shù),利用奇函數(shù)的必要條件,求出的值,進(jìn)而求出,驗(yàn)證是否為奇函數(shù);(2)可判斷在上為增函數(shù),用函數(shù)的單調(diào)性定義加以證明,取兩個(gè)不等的自變量,對應(yīng)函數(shù)值做差,因式分解,判斷函數(shù)值差的符號,即可證明結(jié)論;(3)由,換元令,,由(2)得,,根據(jù)條件轉(zhuǎn)化為在最小值為-2,對二次函數(shù)配方,求出對稱軸,分類討論求出最小值,即可求解【詳解】解:(1)因?yàn)槭嵌x域?yàn)镽的奇函數(shù),所以,即,解得或,可知,此時(shí)滿足,所以.(2)在R上單調(diào)遞增.證明如下:設(shè),則.因?yàn)?,所以,所以,可?因?yàn)楫?dāng)時(shí),有,所以R單調(diào)遞增.(3)由(1)可知,令,則,因?yàn)槭窃龊瘮?shù),且,所以.因?yàn)樵谏系淖钚≈禐椋栽谏系淖钚≈禐?因?yàn)?,所以?dāng)時(shí),,解得或(舍去);當(dāng)時(shí),,不合題意,舍去.綜上可知,.【點(diǎn)睛】本題考查函數(shù)的奇偶性應(yīng)用和單調(diào)性的證明,考查復(fù)合函數(shù)的最值,用換元方法,將問題化歸為二次函數(shù)函數(shù)的最值,屬于較難題.21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 連鎖藥店?duì)I業(yè)款財(cái)務(wù)制度
- 國企項(xiàng)目部財(cái)務(wù)制度匯編
- 港股財(cái)務(wù)制度
- 公司商品財(cái)務(wù)制度
- 建立醫(yī)保財(cái)務(wù)制度
- 私募證券基金財(cái)務(wù)制度
- 軍休所管理制度
- 公司內(nèi)部資料印刷制度
- 基礎(chǔ)雨天施工方案(3篇)
- 斜井地鐵施工方案(3篇)
- 通風(fēng)設(shè)備采購與安裝合同范本
- 化工設(shè)備清洗安全課件
- 光伏收購合同范本
- T∕ZZB 1815-2020 塑料 汽車配件用再生聚碳酸酯(PC)專用料
- 2025~2026學(xué)年吉林省吉林市一中高一10月月考語文試卷
- 天津市南開中學(xué)2025-2026學(xué)年高一上數(shù)學(xué)期末調(diào)研模擬試題含解析
- 麻辣燙創(chuàng)業(yè)商業(yè)計(jì)劃書范文
- 微專題:突破語病題+2026屆高考語文二輪復(fù)習(xí)
- 東呈集團(tuán)內(nèi)部控制中存在的問題及對策研究
- 高科技產(chǎn)業(yè)園區(qū)運(yùn)營管理手冊
- 羽毛球裁判二級考試題庫及答案
評論
0/150
提交評論