貴州省黔三州重點中學2024屆中考數(shù)學押題試卷含解析_第1頁
貴州省黔三州重點中學2024屆中考數(shù)學押題試卷含解析_第2頁
貴州省黔三州重點中學2024屆中考數(shù)學押題試卷含解析_第3頁
貴州省黔三州重點中學2024屆中考數(shù)學押題試卷含解析_第4頁
貴州省黔三州重點中學2024屆中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省黔三州重點中學2024年中考數(shù)學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.對于函數(shù)y=,下列說法正確的是()A.y是x的反比例函數(shù) B.它的圖象過原點C.它的圖象不經(jīng)過第三象限 D.y隨x的增大而減小2.下列圖形是我國國產(chǎn)品牌汽車的標識,在這些汽車標識中,是中心對稱圖形的是()A. B. C. D.3.某班7名女生的體重(單位:kg)分別是35、37、38、40、42、42、74,這組數(shù)據(jù)的眾數(shù)是()A.74 B.44 C.42 D.404.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<05.下列四個實數(shù)中,比5小的是()A. B. C. D.6.關于x的方程3x+2a=x﹣5的解是負數(shù),則a的取值范圍是()A.a(chǎn)< B.a(chǎn)> C.a(chǎn)<﹣ D.a(chǎn)>﹣7.在平面直角坐標系內,點P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.9.如果-a=-aA.a(chǎn)>0 B.a(chǎn)≥0 C.a(chǎn)≤0 D.a(chǎn)<010.九年級(2)班同學根據(jù)興趣分成五個小組,各小組人數(shù)分布如圖所示,則在扇形圖中第一小組對應的圓心角度數(shù)是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數(shù)量關系是________.12.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(1)AB的長等于____;(2)在△ABC的內部有一點P,滿足S△PABS△PBCS△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______13.如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為_____.14.若不等式組1-x≤2,x>m有解,則15.拋物線y=mx2+2mx+5的對稱軸是直線_____.16.若a2+3=2b,則a3﹣2ab+3a=_____.17.同學們設計了一個重復拋擲的實驗:全班48人分為8個小組,每組拋擲同一型號的一枚瓶蓋300次,并記錄蓋面朝上的次數(shù),下表是依次累計各小組的實驗結果.1組1~2組1~3組1~4組1~5組1~6組1~7組1~8組蓋面朝上次數(shù)16533548363280194911221276蓋面朝上頻率0.5500.5580.5370.5270.5340.5270.5340.532根據(jù)實驗,你認為這一型號的瓶蓋蓋面朝上的概率為____,理由是:____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.19.(5分)“分組合作學習”已成為推動課堂教學改革,打造自主高效課堂的重要措施.某中學從全校學生中隨機抽取部分學生對“分組合作學習”實施后的學習興趣情況進行調查分析,統(tǒng)計圖如下:請結合圖中信息解答下列問題:求出隨機抽取調查的學生人數(shù);補全分組后學生學習興趣的條形統(tǒng)計圖;分組后學生學習興趣為“中”的所占的百分比和對應扇形的圓心角.20.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.21.(10分)為了傳承祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復疑無路”.(1)小明回答該問題時,僅對第二個字是選“重”還是選“窮”難以抉擇,隨機選擇其中一個,則小明回答正確的概率是;(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.九宮格22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.23.(12分)如圖,以O為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關系,并說明理由;(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運動一周,當S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標.24.(14分)在2018年韶關市開展的“善美韶關?情暖三江”的志愿者系列括動中,某志愿者組織籌集了部分資金,計劃購買甲、乙兩種書包若干個送給貧困山區(qū)的學生,已知每個甲種書包的價格比每個乙種書包的價格貴10元,用350元購買甲種書包的個數(shù)恰好與用300元購買乙種書包的個數(shù)相同,求甲、乙兩種書包每個的價格各是多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

直接利用反比例函數(shù)的性質結合圖象分布得出答案.【題目詳解】對于函數(shù)y=,y是x2的反比例函數(shù),故選項A錯誤;它的圖象不經(jīng)過原點,故選項B錯誤;它的圖象分布在第一、二象限,不經(jīng)過第三象限,故選項C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【題目點撥】此題主要考查了反比例函數(shù)的性質,正確得出函數(shù)圖象分布是解題關鍵.2、B【解題分析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.3、C【解題分析】試題分析:眾數(shù)是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),在這組數(shù)據(jù)中42出現(xiàn)次數(shù)最多,故選C.考點:眾數(shù).4、B【解題分析】

根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點確定c,根據(jù)對稱軸確定b,根據(jù)拋物線與x軸的交點確定b2-4ac,根據(jù)x=1時,y>0,確定a+b+c的符號.【題目詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【題目點撥】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.5、A【解題分析】

首先確定無理數(shù)的取值范圍,然后再確定是實數(shù)的大小,進而可得答案.【題目詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項正確;B、∵∴,故此選項錯誤;C、∵6<<7,∴5<﹣1<6,故此選項錯誤;D、∵4<<5,∴,故此選項錯誤;故選A.【題目點撥】考查無理數(shù)的估算,掌握無理數(shù)估算的方法是解題的關鍵.通常使用夾逼法.6、D【解題分析】

先解方程求出x,再根據(jù)解是負數(shù)得到關于a的不等式,解不等式即可得.【題目詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數(shù),所以<0,解得:a>﹣.【題目點撥】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數(shù)時,不等號方向要改變.7、D【解題分析】

判斷出P的橫縱坐標的符號,即可判斷出點P所在的相應象限.【題目詳解】當a為正數(shù)的時候,a+3一定為正數(shù),所以點P可能在第一象限,一定不在第四象限,

當a為負數(shù)的時候,a+3可能為正數(shù),也可能為負數(shù),所以點P可能在第二象限,也可能在第三象限,

故選D.【題目點撥】本題考查了點的坐標的知識點,解題的關鍵是由a的取值判斷出相應的象限.8、C【解題分析】

根據(jù)題意可以寫出y關于x的函數(shù)關系式,然后令x=40求出相應的y值,即可解答本題.【題目詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【題目點撥】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關鍵.9、C【解題分析】

根據(jù)絕對值的性質:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數(shù)是1.【題目詳解】因為|-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【題目點撥】絕對值規(guī)律總結:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.10、C【解題分析】試題分析:由題意可得,第一小組對應的圓心角度數(shù)是:×360°=72°,故選C.考點:1.扇形統(tǒng)計圖;2.條形統(tǒng)計圖.二、填空題(共7小題,每小題3分,滿分21分)11、a+b=1.【解題分析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數(shù),故a+b=1.考點:1角平分線;2平面直角坐標系.12、;答案見解析.【解題分析】

(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點D、E,取格點F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.13、【解題分析】

由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據(jù)S陰影=S△OAB-S扇形OMN,進而可得出結論.【題目詳解】∵六邊形ABCDEF是正六邊形,

∴∠AOB=60°,

∴△OAB是等邊三角形,OA=OB=AB=2,

設點G為AB與⊙O的切點,連接OG,則OG⊥AB,

∴∴S陰影=S△OAB-S扇形OMN=故答案為【題目點撥】考查不規(guī)則圖形面積的計算,掌握扇形的面積公式是解題的關鍵.14、m<2【解題分析】分析:解出不等式組的解集,然后根據(jù)解集的取值范圍來確定m的取值范圍.解答:解:由1-x≤2得x≥-1又∵x>m根據(jù)同大取大的原則可知:若不等式組的解集為x≥-1時,則m≤-1若不等式組的解集為x≥m時,則m≥-1.故填m≤-1或m≥-1.點評:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當作已知處理,求出解集再利用不等式組的解集的確定原則來確定未知數(shù)的取值范圍.15、x=﹣1【解題分析】

根據(jù)拋物線的對稱軸公式可直接得出.【題目詳解】解:這里a=m,b=2m∴對稱軸x=故答案為:x=-1.【題目點撥】解答本題關鍵是識記拋物線的對稱軸公式x=.16、1【解題分析】

利用提公因式法將多項式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【題目詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【題目點撥】本題考查了因式分解的應用,利用提公因式法將多項式分解是本題的關鍵.17、0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【解題分析】

根據(jù)用頻率估計概率解答即可.【題目詳解】∵在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值,∴這一型號的瓶蓋蓋面朝上的概率為0.532,故答案為:0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【題目點撥】本題考查了利用頻率估計概率的知識,解答此題關鍵是用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解題分析】

(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【題目詳解】(1)證明:過F作FH⊥BE于H點,在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H⊥BE,∴H為BE中點,∴BE=2BH,∴BE=2CF;(2)四邊形BFGN是菱形.證明:∵將線段EF繞點F順時針旋轉90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°?90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°?∠GFB?∠BFH=90°?∠GFB?∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四邊形,∵EF=BF,∴NB=BF,∴平行四邊NBFG是菱形.點睛:本題主要考查正方形的性質及全等三角形的判定和性質,矩形的判定與性質,菱形的判定等,作出輔助線是解決(1)的關鍵.在(2)中證得△ABN≌△HFE是解題的關鍵.19、(1)200人;(2)補圖見解析;(3)分組后學生學習興趣為“中”的所占的百分比為30%;對應扇形的圓心角為108°.【解題分析】試題分析:(1)用“極高”的人數(shù)所占的百分比,即可解答;

(2)求出“高”的人數(shù),即可補全統(tǒng)計圖;

(3)用“中”的人數(shù)調查的學生人數(shù),即可得到所占的百分比,所占的百分比即可求出對應的扇形圓心角的度數(shù).試題解析:(人).學生學習興趣為“高”的人數(shù)為:(人).補全統(tǒng)計圖如下:分組后學生學習興趣為“中”的所占的百分比為:學生學習興趣為“中”對應扇形的圓心角為:20、(1)詳見解析;(2)詳見解析;(3)圖見解析,點P坐標為(2,0).【解題分析】

(1)根據(jù)網(wǎng)格結構找出點A、B、C平移后的對應點的位置,然后順次連接即可;(2))找出點A、B、C關于原點O的對稱點的位置,然后順次連接即可;(3)找出A的對稱點A′,連接BA′,與x軸交點即為P.【題目詳解】(1)如圖1所示,△A1B1C1,即為所求:(2)如圖2所示,△A2B2C2,即為所求:(3)找出A的對稱點A′(1,﹣1),連接BA′,與x軸交點即為P;如圖3所示,點P即為所求,點P坐標為(2,0).【題目點撥】本題考查作圖-旋轉變換,平移變換,軸對稱最短問題等知識,得出對應點位置是解題關鍵.21、(1);(2)【解題分析】試題分析:(1)利用概率公式直接計算即可;(2)畫出樹狀圖得到所有可能的結果,再找到回答正確的數(shù)目即可求出小麗回答正確的概率.試題解析:(1)∵對第二個字是選“重”還是選“窮”難以抉擇,∴若隨機選擇其中一個正確的概率=,故答案為;(2)畫樹形圖得:由樹狀圖可知共有4種可能結果,其中正確的有1種,所以小麗回答正確的概率=.考點:列表法與樹狀圖法;概率公式.22、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解題分析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;

(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質解決問題;

(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【題目詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【題目點撥】本題考核知識點:二次函數(shù)的綜合應用.解題關鍵點:靈活運用二次函數(shù)性質,運用數(shù)形結合思想.23、(1)60°;(2)見解析;(3)對應的M點坐標分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解題分析】

(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.

(2)由(1)的結論知:OA=AC,因此OA=AC=AP,即OP邊上的中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論