2024屆云南省昆明市黃岡實驗學(xué)校高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2024屆云南省昆明市黃岡實驗學(xué)校高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2024屆云南省昆明市黃岡實驗學(xué)校高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2024屆云南省昆明市黃岡實驗學(xué)校高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2024屆云南省昆明市黃岡實驗學(xué)校高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆云南省昆明市黃岡實驗學(xué)校高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)在處取得極小值,則的最小值為()A.4 B.5 C.9 D.102.圓周運(yùn)動是一種常見的周期性變化現(xiàn)象,可表述為:質(zhì)點在以某點為圓心半徑為r的圓周上的運(yùn)動叫“圓周運(yùn)動”,如圖所示,圓O上的點以點A為起點沿逆時針方向旋轉(zhuǎn)到點P,若連接OA、OP,形成一個角,當(dāng)角,則()A. B. C. D.13.已知直三棱柱的所有棱長都相等,為的中點,則與所成角的余弦值為()A. B. C. D.4.已知數(shù)列滿足是數(shù)列的前項和,則()A. B. C. D.5.已知向量,,,則與的夾角為()A. B. C. D.6.一支田徑隊有男運(yùn)動員560人,女運(yùn)動員420人,為了解運(yùn)動員的健康情況,從男運(yùn)動員中任意抽取16人,從女生中任意抽取12人進(jìn)行調(diào)查.這種抽樣方法是()A.簡單隨機(jī)抽樣法 B.抽簽法C.隨機(jī)數(shù)表法 D.分層抽樣法7.下列結(jié)論正確的是()A.若則; B.若,則C.若,則 D.若,則;8.已知之間的幾組數(shù)據(jù)如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為中的前兩組數(shù)據(jù)和求得的直線方程為則以下結(jié)論正確的是()A. B. C. D.9.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分則可中獎,小明要想增加中獎機(jī)會,應(yīng)選擇的游戲盤是A. B. C. D.10.在中,內(nèi)角所對的邊分別為,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項的和________12.等比數(shù)列前n項和為,若,則______.13.已知三棱錐,若平面ABC,,則異面直線PB與AC所成角的余弦值為______.14.已知直線與直線互相平行,則______.15.若,則________.16.已知向量,若向量與垂直,則等于_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前n項和為,滿足:.(1)證明:數(shù)列是等比數(shù)列;(2)令,,求數(shù)列的前n項和.18.如圖,某小區(qū)有一塊半徑為米的半圓形空地,開發(fā)商計劃在該空地上征地建一個矩形的花壇和一個等腰三角形的水池EDC,其中為圓心,在圓的直徑上,在半圓周上.(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;(2)當(dāng)滿足取得最大值時,建造效果最美觀.試求的最大值,以及相應(yīng)角的值.19.如圖,在四邊形中,.(1)若為等邊三角形,且是的中點,求.(2)若,,求.20.已知等比數(shù)列的各項均為正數(shù),且,,數(shù)列的前項和.(1)求;(2)記,求數(shù)列的前項和.21.某企業(yè)2015年的純利潤為500萬元,因為企業(yè)的設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降.若不進(jìn)行技術(shù)改造,預(yù)測從2015年開始,此后每年比上一年純利潤減少20萬元.如果進(jìn)行技術(shù)改造,2016年初該企業(yè)需一次性投入資金600萬元,在未扣除技術(shù)改造資金的情況下,預(yù)計2016年的利潤為750萬元,此后每年的利潤比前一年利潤的一半還多250萬元.(1)設(shè)從2016年起的第n年(以2016年為第一年),該企業(yè)不進(jìn)行技術(shù)改造的年純利潤為萬元;進(jìn)行技術(shù)改造后,在未扣除技術(shù)改造資金的情況下的年利潤為萬元,求和;(2)設(shè)從2016年起的第n年(以2016年為第一年),該企業(yè)不進(jìn)行技術(shù)改造的累計純利潤為萬元,進(jìn)行技術(shù)改造后的累計純利潤為萬元,求和;(3)依上述預(yù)測,從2016年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造的累計純利潤將超過不進(jìn)行技術(shù)改造的累計純利潤?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】由,得,則,所以,所以,當(dāng)且僅當(dāng),即時,等號成立,故選C.2、A【解題分析】

運(yùn)用求任意角的三角函數(shù)值的步驟:化正、脫周、變銳角和求值,可得所求值.【題目詳解】.故選:A.【題目點撥】本題考查任意角三角函數(shù)值的求法,屬于基礎(chǔ)題.3、D【解題分析】

取的中點,連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【題目詳解】由題意,取的中點,連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【題目點撥】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、D【解題分析】

由已知遞推關(guān)系式可以推出數(shù)列的特征,即數(shù)列和均是等比數(shù)列,利用等比數(shù)列性質(zhì)求解即可.【題目詳解】解:由已知可得,當(dāng)時,由得,所以數(shù)列和均是公比為2的等比數(shù)列,首項分別為2和1,由等比數(shù)列知識可求得,,故選:D.【題目點撥】本題主要考查遞推關(guān)系式,及等比數(shù)列的相關(guān)知識,屬于中檔題.5、D【解題分析】

直接利用向量的數(shù)量積轉(zhuǎn)化求解向量的夾角即可.【題目詳解】因為,所以與的夾角為.故選:D.【題目點撥】本題主要考查向量的夾角的運(yùn)算,以及運(yùn)用向量的數(shù)量積運(yùn)算和向量的模.6、D【解題分析】

若總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進(jìn)行抽樣【題目詳解】總體由男生和女生組成,比例為560:420=4:1,所抽取的比例也是16:12=4:1.故選D.【題目點撥】本小題主要考查抽樣方法,當(dāng)總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進(jìn)行抽樣,屬基本題.7、D【解題分析】

根據(jù)不等式的性質(zhì),結(jié)合選項,進(jìn)行逐一判斷即可.【題目詳解】因,則當(dāng)時,;當(dāng)時,,故A錯誤;因,則或,故B錯誤;因,才有,條件不足,故C錯誤;因,則,則只能是,故D正確.故選:D.【題目點撥】本題考查不等式的基本性質(zhì),需要對不等式的性質(zhì)非常熟練,屬基礎(chǔ)題.8、C【解題分析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′9、A【解題分析】由幾何概型公式:A中的概率為,B中的概率為,C中的概率為,D中的概率為.本題選擇A選項.點睛:解答幾何概型問題的關(guān)鍵在于弄清題中的考察對象和對象的活動范圍.當(dāng)考察對象為點,點的活動范圍在線段上時,用線段長度比計算;當(dāng)考察對象為線時,一般用角度比計算,即當(dāng)半徑一定時,由于弧長之比等于其所對應(yīng)的圓心角的度數(shù)之比,所以角度之比實際上是所對的弧長(曲線長)之比.10、C【解題分析】

根據(jù)題目條件結(jié)合三角形的正弦定理以及三角形內(nèi)角和定理可得sinA,進(jìn)而利用二倍角余弦公式得到結(jié)果.【題目詳解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故選C【題目點撥】本題考查了正弦定理及二倍角余弦公式的靈活運(yùn)用,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2019【解題分析】

根據(jù)二次方程根與系數(shù)的關(guān)系得出,再利用等差數(shù)列下標(biāo)和的性質(zhì)得到,然后利用等差數(shù)列求和公式可得出答案.【題目詳解】由二次方程根與系數(shù)的關(guān)系可得,由等差數(shù)列的性質(zhì)得出,因此,等差數(shù)列的前項的和為,故答案為.【題目點撥】本題考查等差數(shù)列的性質(zhì)與等差數(shù)列求和公式的應(yīng)用,涉及二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵在于等差數(shù)列性質(zhì)的應(yīng)用,屬于中等題.12、【解題分析】

根據(jù)等比數(shù)列的性質(zhì)得到成等比,從而列出關(guān)系式,又,接著用表示,代入到關(guān)系式中,可求出的值.【題目詳解】因為等比數(shù)列的前n項和為,則成等比,且,所以,又因為,即,所以,整理得.故答案為:.【題目點撥】本題考查學(xué)生靈活運(yùn)用等比數(shù)列的性質(zhì)化簡求值,是一道基礎(chǔ)題。解決本題的關(guān)鍵是根據(jù)等比數(shù)列的性質(zhì)得到成等比.13、【解題分析】

過B作,且,則或其補(bǔ)角即為異面直線PB與AC所成角由此能求出異面直線PB與AC所成的角的余弦值.【題目詳解】過B作,且,則四邊形為菱形,如圖所示:或其補(bǔ)角即為異面直線PB與AC所成角.設(shè).,,平面ABC,,.異面直線PB與AC所成的角的余弦值為.故答案為.【題目點撥】本題考查異面直線所成角的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).14、【解題分析】

由兩直線平行得,,解出值.【題目詳解】由直線與直線互相平行,得,解得.故答案為:.【題目點撥】本題考查兩直線平行的性質(zhì),兩直線平行,一次項系數(shù)之比相等,但不等于常數(shù)項之比,屬于基礎(chǔ)題.15、【解題分析】

觀察式子特征,直接寫出,即可求出。【題目詳解】觀察的式子特征,明確各項關(guān)系,以及首末兩項,即可寫出,所以,相比,增加了后兩項,少了第一項,故?!绢}目點撥】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,正確弄清式子特征是解題關(guān)鍵。16、2【解題分析】

根據(jù)向量的數(shù)量積的運(yùn)算公式,列出方程,即可求解.【題目詳解】由題意,向量,因為向量與垂直,所以,解得.故答案為:2.【題目點撥】本題主要考查了向量的坐標(biāo)運(yùn)算,以及向量的垂直關(guān)系的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】

(1)利用當(dāng)時,求證即可;(2)先結(jié)合(1)求得,再由,然后累加求和即可.【題目詳解】解:(1)因為,①,②①-②得:,即,又,即,則,即數(shù)列是以6為首項,3為公比的等比數(shù)列;(2)由(1)得,則,即,則,即,故.【題目點撥】本題考查了利用定義法證明等比數(shù)列,重點考查了公式法求和及裂項求和法求和,屬中檔題.18、(1)(2)最大值為,此時【解題分析】

(1)連接,在中,求出,進(jìn)而求出面積以及角的范圍;(2)令,再求出的范圍,轉(zhuǎn)化為二次函數(shù)即可求出最大值,以及相應(yīng)角的值.【題目詳解】(1)連接,在中,,(2),令,因為,所以,所以因為在上單調(diào)遞增,所以時有最大值為,此時【題目點撥】本題主要考查三角函數(shù)與實際應(yīng)用相結(jié)合,最終轉(zhuǎn)化為二次函數(shù)進(jìn)行求解,這類問題的特點是通過現(xiàn)實生活的事例考查解決問題的能力、仔細(xì)理解題,才能將實際問題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答.19、(1)(2)【解題分析】

(1)先由題意,結(jié)合平面向量基本定理,用表示出,再由向量的數(shù)量積運(yùn)算,即可得出結(jié)果;(2)先由向量數(shù)量積的運(yùn)算,求出,再由,結(jié)合題中條件,即可得出結(jié)果.【題目詳解】解:(1)為等邊三角形,且,又是中點,又(2)由題意:,,,又【題目點撥】本題主要考查向量數(shù)量積的運(yùn)算,熟記平面向量基本定理,以及向量數(shù)量積的運(yùn)算法則即可,屬于常考題型.20、(1)(2)【解題分析】

(1)先設(shè)等比數(shù)列的公比為,再求解即可;(2)由已知條件可得,再利用錯位相減法求和即可.【題目詳解】解:(1)設(shè)等比數(shù)列的公比為,則,由,,則,即,則,(2)由數(shù)列的前項和,則,即當(dāng)時,,即,又,所以,,①,②①-②得:,即.【題目點撥】本題考查了等比數(shù)列通項公式的求法,重點考查了錯位相減法求數(shù)列前項和,屬中檔題.21、(1),(2),(3)至少經(jīng)過4年,進(jìn)行技術(shù)改造的累計純利潤將超過不進(jìn)行技術(shù)改造的累計純利潤.【解題分析】

(1)利用等差數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論