2024屆海南省屯昌縣達標名校中考四模數(shù)學試題含解析_第1頁
2024屆海南省屯昌縣達標名校中考四模數(shù)學試題含解析_第2頁
2024屆海南省屯昌縣達標名校中考四模數(shù)學試題含解析_第3頁
2024屆海南省屯昌縣達標名校中考四模數(shù)學試題含解析_第4頁
2024屆海南省屯昌縣達標名校中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆海南省屯昌縣達標名校中考四模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結(jié)論一定正確的是()A. B.C. D.2.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位3.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.4.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣65.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.26.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x47.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.608.我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結(jié),滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是()A.84 B.336 C.510 D.13269.下列計算正確的是(

).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=210.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),則該幾何體的左視圖是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結(jié)果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.12.如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.13.如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn.當n≥2時,Sn﹣Sn﹣1=▲.14.一次函數(shù)與的圖象如圖,則的解集是__.15.已知關(guān)于x,y的二元一次方程組的解互為相反數(shù),則k的值是_________.16.如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點E,連接BE,將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為_____.17.某菜農(nóng)搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農(nóng)身高為1.8m,他在不彎腰的情況下,在棚內(nèi)的橫向活動范圍是__m.三、解答題(共7小題,滿分69分)18.(10分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結(jié)果保留根號).19.(5分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?20.(8分)在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.21.(10分)許昌芙蓉湖位于許昌市水系建設(shè)總體規(guī)劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態(tài)環(huán)境打造生態(tài)宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點之間的距離他沿著與直線AB平行的道路EF行走,走到點C處,測得∠ACF=45°,再向前走300米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點之間的距離(結(jié)果保留一位小數(shù))22.(10分)某樓盤2018年2月份準備以每平方米7500元的均價對外銷售,由于國家有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望,為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對價格連續(xù)兩個月進行下調(diào),4月份下調(diào)到每平方米6075元的均價開盤銷售.(1)求3、4兩月平均每月下調(diào)的百分率;(2)小穎家現(xiàn)在準備以每平方米6075元的開盤均價,購買一套100平方米的房子,因為她家一次性付清購房款,開發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,送兩年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元,小穎家選擇哪種方案更優(yōu)惠?(3)如果房價繼續(xù)回落,按此平均下調(diào)的百分率,請你預測到6月份該樓盤商品房成交均價是否會跌破4800元/平方米,請說明理由.23.(12分)如圖,在菱形ABCD中,E、F分別為AD和CD上的點,且AE=CF,連接AF、CE交于點G,求證:點G在BD上.24.(14分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總?cè)藬?shù)為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.2、C【解析】

根據(jù)“上加下減”的原則求解即可.【詳解】將函數(shù)y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應的函數(shù)解析式是y=2x.故選:C.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關(guān)鍵.3、D【解析】

本題關(guān)鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.【點睛】本題考查了平面圖形在實際生活中的應用,有良好的空間想象能力過動手能力是解題關(guān)鍵.4、D【解析】

根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】解:0.0000025第一個有效數(shù)字前有6個0(含小數(shù)點前的1個0),從而.故選D.5、D【解析】

連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內(nèi)的綜合問題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.6、D【解析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.7、B【解析】

有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點睛】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.8、C【解析】由題意滿七進一,可得該圖示為七進制數(shù),化為十進制數(shù)為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數(shù)的方法,注意運用七進制轉(zhuǎn)化為十進制,考查運算能力,屬于基礎(chǔ)題.9、D【解析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術(shù)平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義是解題的關(guān)鍵.10、D【解析】根據(jù)俯視圖中每列正方形的個數(shù),再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:

.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】

(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).12、42【解析】

延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設(shè)BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.【詳解】延長AB交DC于H,作EG⊥AB于G,如圖所示:

則GH=DE=15米,EG=DH,

∵梯坎坡度i=1:2.4,

∴BH:CH=1:2.4,

設(shè)BH=x米,則CH=2.4x米,

在Rt△BCH中,BC=13米,

由勾股定理得:x2+(2.4x)2=132,

解得:x=5,

∴BH=5米,CH=12米,

∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),

∵∠α=45°,

∴∠EAG=90°-45°=45°,

∴△AEG是等腰直角三角形,

∴AG=EG=32(米),

∴AB=AG+BG=32+10=42(米);

故答案為42【點睛】本題考查了解直角三角形的應用-坡度、俯角問題;通過作輔助線運用勾股定理求出BH,得出EG是解決問題的關(guān)鍵.13、【解析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當AB=n時,△AME的面積為,當AB=n-1時,△AME的面積為.∴當n≥2時,14、【解析】

不等式kx+b-(x+a)>0的解集是一次函數(shù)y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據(jù)此即可解答.【詳解】解:不等式的解集是.故答案為:.【點睛】本題考查了一次函數(shù)的圖象與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.15、-1【解析】

∵關(guān)于x,y的二元一次方程組的解互為相反數(shù),∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案為-116、【解析】

設(shè)CE=x,由矩形的性質(zhì)得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質(zhì)得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的長度,進而求出DF的長度;然后在Rt△DEF根據(jù)勾股定理列出關(guān)于x的方程即可解決問題.【詳解】設(shè)CE=x.∵四邊形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案為.17、1【解析】

設(shè)拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時x的值,進而求出答案;【詳解】設(shè)拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農(nóng)的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.三、解答題(共7小題,滿分69分)18、C點到地面AD的距離為:(2+2)m.【解析】

直接構(gòu)造直角三角形,再利用銳角三角函數(shù)關(guān)系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點到地面AD的距離為:【點睛】考查解直角三角形,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.19、-2,-1,0,1【解析】

解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數(shù),則x取-2,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數(shù)解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數(shù)解(包括正整數(shù),0,負整數(shù)).20、(1)證明見解析(2)【解析】分析:(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結(jié)合∠EDB=90°即可得到四邊形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結(jié)合BE=DF可得BE=5,由此可得AB=8,結(jié)合BF=DE=4即可求得tan∠BAF=.詳解:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四邊形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.點睛:(1)熟悉平行四邊形的性質(zhì)和矩形的判定方法是解答第1小題的關(guān)鍵;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,進而推得DF=AD=5是解答第2小題的關(guān)鍵.21、215.6米.【解析】

過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點,根據(jù)Rt△ACM和三角函數(shù)求出CM、DN,然后根據(jù)即可求出A、B兩點間的距離.【詳解】解:過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點在Rt△ACM中,∵,∴AM=CM=200米,又∵CD=300米,所以米,在Rt△BDN中,∠BDF=60°,BN=200米∴米,∴米即A,B兩點之間的距離約為215.6米.【點睛】本題主要考查三角函數(shù),正確做輔助線是解題的關(guān)鍵.22、(1)10%;(2)方案一更優(yōu)惠,小穎選擇方案一:打9.8折購買;(3)不會跌破4800元/平方米,理由見解析【解析】

(1)設(shè)3、4兩月平均每月下調(diào)的百分率為x,根據(jù)下降率公式列方程解方程求出答案;(2)分別計算出方案一與方案二的費用相比較即可;(3)根據(jù)(1)的答案計算出6月份的價格即可得到答案.【詳解】(1)設(shè)3、4兩月平均每月下調(diào)的百分率為x,由題意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4兩月平均每月下調(diào)的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論