版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省武漢市武昌區(qū)拼搏聯(lián)盟重點名校中考數(shù)學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.2.若一個正多邊形的每個內(nèi)角為150°,則這個正多邊形的邊數(shù)是()A.12 B.11 C.10 D.93.關于x的一元二次方程x2+2x+k+1=0的兩個實根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.4.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC5.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=06.某校九年級(1)班學生畢業(yè)時,每個同學都將自己的相片向全班其他同學各送一張留作紀念,全班共送了1980張相片,如果全班有x名學生,根據(jù)題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19807.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的圖象可能是()A. B. C. D.8.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°9.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.10.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側(cè),C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.11.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:112.已知:二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,下列結(jié)論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.14.如圖,在梯形中,,E、F分別是邊的中點,設,那么等于__________(結(jié)果用的線性組合表示).15.如圖,已知,D、E分別是邊AB、AC上的點,且設,,那么______用向量、表示16.A.如果一個正多邊形的一個外角是45°,那么這個正多邊形對角線的條數(shù)一共有_____條.B.用計算器計算:?tan63°27′≈_____(精確到0.01).17.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為_____.18.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.20.(6分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.21.(6分)菱形的邊長為5,兩條對角線、相交于點,且,的長分別是關于的方程的兩根,求的值.22.(8分)計算:2-1+20160-3tan30°+|-|23.(8分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產(chǎn)更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)之間的函數(shù)圖象如下圖所示.求甲組加工零件的數(shù)量y與時間x之間的函數(shù)關系式.求乙組加工零件總量a的值.24.(10分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.25.(10分)如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:≌;(2)當時,求四邊形AECF的面積.26.(12分)某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結(jié)果保留根號).27.(12分)如圖,直線l切⊙O于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.2、A【解析】
根據(jù)正多邊形的外角與它對應的內(nèi)角互補,得到這個正多邊形的每個外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個正多邊形的每個內(nèi)角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數(shù)==1.故選:A.【點睛】本題考查了正多邊形的外角與它對應的內(nèi)角互補的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).3、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關系列出不等式,求出解集.解:∵關于x的一元二次方程x2+2x+k+1=0有兩個實根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點評:本題考查了根的判別式、根與系數(shù)的關系,在數(shù)軸上找到公共部分是解題的關鍵.4、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.5、D【解析】
拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.6、D【解析】
根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,∴全班共送:(x﹣1)x=1980,故選D.【點睛】此題主要考查了一元二次方程的應用,本題要注意讀清題意,弄清楚每人要贈送(x﹣1)張相片,有x個人是解決問題的關鍵.7、C【解析】
根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.【點睛】本題考查了函數(shù)圖像的性質(zhì),屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關系是解題關鍵.8、D【解析】
根據(jù)兩直線平行,內(nèi)錯角相等可得∠3=∠1,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點睛】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并準確識圖是解題的關鍵.9、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.10、A【解析】【分析】設,,根據(jù)反比例函數(shù)圖象上點的坐標特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式是解題的關鍵.11、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點睛】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.12、B【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)判斷即可.【詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側(cè)知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質(zhì)可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【點睛】本題二次函數(shù)的圖象與性質(zhì),牢記公式和數(shù)形結(jié)合是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、0.7【解析】
用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.14、.【解析】
作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點睛】本題考查了平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考常考題型.15、【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結(jié)果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì)以及向量的運算.16、205.1【解析】
A、先根據(jù)多邊形外角和為360°且各外角相等求得邊數(shù),再根據(jù)多邊形對角線條數(shù)的計算公式計算可得;B、利用計算器計算可得.【詳解】A、根據(jù)題意,此正多邊形的邊數(shù)為360°÷45°=8,則這個正多邊形對角線的條數(shù)一共有=20,故答案為20;B、?tan63°27′≈2.646×2.001≈5.1,故答案為5.1.【點睛】本題主要考查計算器-三角函數(shù),解題的關鍵是掌握多邊形的內(nèi)角與外角、對角線計算公式及計算器的使用.17、或1【解析】
圖1,∠B’MC=90°,B’與點A重合,M是BC的中點,所以BM=,圖2,當∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【詳解】請在此輸入詳解!18、(或)【解析】
將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉(zhuǎn)化頂點式的能力.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)平行四邊形.【解析】
(1)由“三線合一”定理即可得到結(jié)論;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據(jù)垂直平分線的性質(zhì)有AB=BE,于是AD=BE,進而得到AD=EC,根據(jù)平行四邊形的判定即可得到結(jié)論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質(zhì)以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關鍵.20、(1)1;(2)證明見解析;(1)點坐標為.【解析】
由點B的坐標,利用反比例函數(shù)圖象上點的坐標特征可求出k值;設A點坐標為,則D點坐標為,P點坐標為,C點坐標為,進而可得出PB,PC,PA,PD的長度,由四條線段的長度可得出,結(jié)合可得出∽,由相似三角形的性質(zhì)可得出,再利用“同位角相等,兩直線平行”可證出;由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關于a的方程,解之取其負值,再將其代入P點的坐標中即可求出結(jié)論.【詳解】解:點在反比例函數(shù)的圖象,.故答案為:1.證明:反比例函數(shù)解析式為,設A點坐標為軸于點C,軸于點D,點坐標為,P點坐標為,C點坐標為,,,,,,,.又,∽,,.解:四邊形ABCD的面積和的面積相等,,,整理得:,解得:,舍去,點坐標為.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、相似三角形的判定與性質(zhì)、平行線的判定以及三角形的面積,解題關鍵是:根據(jù)點的坐標,利用反比例函數(shù)圖象上點的坐標特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面積公式,找出關于a的方程.21、.【解析】
由題意可知:菱形ABCD的邊長是5,則AO2+BO2=25,則再根據(jù)根與系數(shù)的關系可得:AO+BO=?(2m?1),AO?BO=m2+3;代入AO2+BO2中,得到關于m的方程后,即可求得m的值.【詳解】解:∵,的長分別是關于的方程的兩根,設方程的兩根為和,可令,,∵四邊形是菱形,∴,在中:由勾股定理得:,∴,則,由根與系數(shù)的關系得:,,∴,整理得:,解得:,又∵,∴,解得,∴.【點睛】此題主要考查了菱形的性質(zhì)、勾股定理、以及根與系數(shù)的關系,將菱形的性質(zhì)與一元二次方程根與系數(shù)的關系,以及代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.22、【解析】
原式第一項利用負指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值化簡,最后一項利用絕對值的代數(shù)意義化簡,即可得到結(jié)果;【詳解】原式===.【點睛】此題考查實數(shù)的混合運算.此題難度不大,注意解決此類題目的關鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)值、絕對值等考點的運算.23、(1)y=60x;(2)300【解析】
(1)由題圖可知,甲組的y是x的正比例函數(shù).設甲組加工的零件數(shù)量y與時間x的函數(shù)關系式為y=kx.根據(jù)題意,得6k=360,解得k=60.所以,甲組加工的零件數(shù)量y與時間x之間的關系式為y=60x.(2)當x=2時,y=100.因為更換設備后,乙組工作效率是原來的2倍.所以,解得a=300.24、4【解析】
已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點,則直線為的中垂線,直線過點,在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點,則直線為的中垂線,直線過點,,,,即,.【點睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關鍵.25、(1)見解析;(2)【解析】
(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據(jù)全等三角形的判定推出即可;
(2)求出△ABE是等邊三角形,求出高AH的長,再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點E、F分別是BC、AD的中點,∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點E、F分別是BC、AD的中點,,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生交接班管理制度
- 衛(wèi)生院輸血相關管理制度
- 衛(wèi)生院家風教育制度
- 中小學衛(wèi)生安全責任制度
- 鄉(xiāng)衛(wèi)生院中醫(yī)藥管理制度
- 宿舍及衛(wèi)生管理制度
- 美容院衛(wèi)生培訓制度
- 突公共衛(wèi)生事件處置制度
- 環(huán)境衛(wèi)生果皮箱管理制度
- 鎮(zhèn)食品衛(wèi)生管理制度
- 新河北省安全生產(chǎn)條例培訓課件
- 【初高中】【假期學習規(guī)劃】主題班會【寒假有為彎道超車】
- 2026年及未來5年市場數(shù)據(jù)中國超細銅粉行業(yè)發(fā)展趨勢及投資前景預測報告
- (新教材)2026年人教版八年級下冊數(shù)學 21.2.2 平行四邊形的判定 21.2.3 三角形的中位線 課件
- 繼承農(nóng)村房屋協(xié)議書
- 2025-2026學人教版八年級英語上冊(全冊)教案設計(附教材目錄)
- 湖南公務員考試申論試題(行政執(zhí)法卷)1
- 《血管內(nèi)超聲指導冠脈介入診療技術規(guī)范》
- 2025版中國藥典一部凡例深度解讀
- 神經(jīng)外科手術風險評估方案
- 2.三體系程序文件
評論
0/150
提交評論