版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
麗水市2023學(xué)年第一學(xué)期普通高中教學(xué)質(zhì)量監(jiān)控高一數(shù)學(xué)試題卷(2024.1)本試題卷分選擇題和非選擇題兩部分.全卷共4頁(yè),滿分150分,考試時(shí)間120分鐘.注意事項(xiàng):1.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用黑色字跡的簽字筆或鋼筆分別填在試題卷和答題卷規(guī)定的位置上.2.答題時(shí),請(qǐng)按照答題卷上“注意事項(xiàng)”的要求,在答題卷相應(yīng)的位置上規(guī)范作答,在本試題卷上的作答一律無(wú)效.一、單項(xiàng)選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.設(shè)集合,,若,則的值是()A. B. C. D.【答案】C【解析】【分析】根據(jù)題意,由交集運(yùn)算的結(jié)果,即可得到答案.【詳解】因集合,,且,則.故選:C2.命題“”的否定為()A. B.C. D.【答案】B【解析】【分析】根據(jù)全稱量詞命題:的否定是特稱量詞命題:,即可判斷.【詳解】根據(jù)全稱量詞命題:的否定是特稱量詞命題:,可知命題“”的否定為“”,故選:B.3.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】【分析】根據(jù)充分性和必要性兩方面判斷即可;【詳解】因?yàn)?,所以或,則可以推出,但不能推出.故“”是“”的充分不必要條件,故選:A.4.函數(shù)的定義域是()A. B.C.且 D.且【答案】D【解析】【分析】結(jié)合二次根式、分式和對(duì)數(shù)性質(zhì)即可求解.【詳解】由題可知,解得且.故選:D5.酒駕是嚴(yán)重危害交通安全的違法行為.為了保障交通安全,根據(jù)國(guó)家有關(guān)規(guī)定:血液中酒精含量達(dá)到的駕駛員即為酒后駕車,達(dá)到及以上認(rèn)定為醉酒駕車.假設(shè)某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了.如果在此刻停止喝酒以后,他血液中酒精含量會(huì)以每小時(shí)的速度減少,那么他至少經(jīng)過(guò)幾個(gè)小時(shí)才能駕駛?(參考數(shù)據(jù):)()A. B. C. D.【答案】D【解析】【分析】利用題中給出的信息,設(shè)他至少要經(jīng)過(guò)小時(shí)后才可以駕駛機(jī)動(dòng)車,則,然后利用指數(shù)與對(duì)數(shù)的互化以及對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行求解,即可得到答案.【詳解】某駕駛員喝了一定量酒后,其血液中的酒精含量上升到了,則血液中酒精含量達(dá)到,在停止喝酒以后,他血液中酒精含量會(huì)以每小時(shí)20%速度減少,他至少要經(jīng)過(guò)1小時(shí)后才可以駕駛機(jī)動(dòng)車.則,,.他至少經(jīng)過(guò)個(gè)小時(shí)才能駕駛.故選:D.6.已知函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則的一個(gè)可能值是()A.0 B. C. D.【答案】A【解析】【分析】結(jié)合函數(shù)平移法則寫(xiě)出平移后的解析式,進(jìn)而得解.【詳解】的圖象向左平移個(gè)單位長(zhǎng)度后的解析式為,由題知,,所以,所以,即,由題知,當(dāng)時(shí),.故選:A7.已知增函數(shù)的圖象在上是一條連續(xù)不斷的曲線,在用二分法求該函數(shù)零點(diǎn)的過(guò)程中,依次確定了零點(diǎn)所在區(qū)間為,,,則的值是()A. B. C. D.【答案】B【解析】【分析】根據(jù)二分法的過(guò)程得到滿足的方程組,由此求解出的值,即可得出答案.【詳解】因?yàn)橐来未_定了零點(diǎn)所在區(qū)間為,,,可得,即,解得.所以.故選:B.8.已知,,則()A. B. C. D.【答案】A【解析】【分析】利用函數(shù)的單調(diào)性即可得到,再利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性得到,,則得到三者大小關(guān)系.【詳解】令,根據(jù)為上的單調(diào)減函數(shù),則在上單調(diào)遞減,且,,所以函數(shù)在上存在唯一的零點(diǎn),故;又因?yàn)椋?,所以,即,所以,所以,即,所?因?yàn)?,所以,所以,即,所以,綜上可得:.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是利用函數(shù)的單調(diào)性和零點(diǎn)存在定理得到,最后再結(jié)合指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)即可比較大小.二、多項(xiàng)選擇題(本大題共4小題,每小題5分,共計(jì)20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對(duì)的得5分,有選錯(cuò)的得0分,部分選對(duì)的得2分)9.如果,那么下面結(jié)論一定成立的是()A. B. C. D.【答案】BC【解析】【分析】根據(jù)不等式的性質(zhì)逐一判斷即可.【詳解】對(duì)于AD,當(dāng)時(shí),,故AD錯(cuò)誤;對(duì)于BC,因?yàn)椋?,故BC正確;故選:BC.10.已知函數(shù),則()A.的最小正周期是 B.的定義域是C.的圖象關(guān)于點(diǎn)對(duì)稱 D.在上單調(diào)遞增【答案】ACD【解析】【分析】根據(jù)正切函數(shù)的圖象與性質(zhì),逐項(xiàng)判定,即可求解.【詳解】由題意,函數(shù),可得的最小正周期為,所以A正確;令,解得,即函數(shù)的定義域?yàn)?,所以B不正確;令,解得,當(dāng)時(shí),可得,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,所以C正確;由,可得,根據(jù)正切函數(shù)性質(zhì),可得函數(shù)在上單調(diào)遞增,所以D正確.故選:ACD.11.下列是真命題的是()A.函數(shù)且的圖像恒過(guò)定點(diǎn)B.函數(shù)的值域是C.函數(shù)為奇函數(shù)D.函數(shù)的圖像的對(duì)稱軸是【答案】AC【解析】【分析】由指數(shù)函數(shù)過(guò)定點(diǎn)即可判斷A,由指數(shù)型復(fù)合函數(shù)的值域即可判斷B,由函數(shù)奇偶性的定義即可判斷C,由函數(shù)對(duì)稱性的定義即可判斷D【詳解】對(duì)于A,令,則,當(dāng)時(shí),,所以函數(shù)恒過(guò)定點(diǎn),故A正確;對(duì)于B,因?yàn)?,則,令,則,則,即函數(shù)的值域是,故B錯(cuò)誤;對(duì)于C,因?yàn)楹瘮?shù)定義域?yàn)殛P(guān)于原點(diǎn)對(duì)稱,且,則,所以函數(shù)為奇函數(shù),故C正確;對(duì)于D,函數(shù)的圖像的對(duì)稱軸是,故D錯(cuò)誤;故選:AC12.已知函數(shù),則下列判斷正確的是()A. B.C.函數(shù)的圖象存在對(duì)稱軸 D.函數(shù)的圖象存在對(duì)稱中心【答案】ABD【解析】【分析】分別求出分子和分母的取值范圍,利用不等式的性質(zhì)即可判斷選項(xiàng)A;判斷,的取值范圍,得出,進(jìn)而可判斷選項(xiàng)B;根據(jù)軸對(duì)稱的定義可判斷選項(xiàng)C;根據(jù)可判斷選項(xiàng)D.【詳解】對(duì)于選項(xiàng)A:因?yàn)?,?dāng)時(shí)等號(hào)成立;,當(dāng)時(shí)等號(hào)成立,則兩個(gè)式子中等號(hào)不會(huì)同時(shí)成立,所以由不等式性質(zhì)可得;故選項(xiàng)A正確;對(duì)于選項(xiàng)B:顯然.因?yàn)楫?dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí);當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí);所以,則.又因?yàn)?,所以,即,故選項(xiàng)B正確;對(duì)于選項(xiàng)C:因?yàn)?,?顯然,所以函數(shù)的圖象不存在對(duì)稱軸,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D:因?yàn)?,所以函?shù)的圖象關(guān)于點(diǎn)對(duì)稱,故選項(xiàng)D正確.故選:ABD.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查函數(shù)單調(diào)性與最值、對(duì)稱中心和對(duì)稱軸、函數(shù)與不等式等知識(shí)的綜合應(yīng)用.解題關(guān)鍵在于對(duì)基礎(chǔ)知識(shí)的掌握和運(yùn)用.利用余弦函數(shù)、二次函數(shù)的最值及不等式的性質(zhì)可判斷選項(xiàng)A;將不等式轉(zhuǎn)化為,再結(jié)合,的取值范圍可判斷選項(xiàng)B;利用對(duì)稱軸和對(duì)稱中心的定義可判斷選項(xiàng)CD.三、填空題(本大題共6小題,每小題5分,共30分)13.若扇形的半徑為2,弧長(zhǎng)為3,則扇形的面積為_(kāi)_____________.【答案】3【解析】【分析】根據(jù)扇形的面積公式直接運(yùn)算求解.【詳解】由題意可得:扇形的面積為.故答案為:3.14.若冪函數(shù)的圖象不經(jīng)過(guò)原點(diǎn),則實(shí)數(shù)的值是______.【答案】【解析】【分析】由冪函數(shù)定義得,結(jié)合指數(shù)小于等于0即可求解.【詳解】由題可知,解得,舍去.故答案為:15.化簡(jiǎn)______.【答案】1【解析】【分析】利用誘導(dǎo)公式化簡(jiǎn)求值.【詳解】.故答案為:1.16.若正數(shù),滿足,則的最大值為_(kāi)_______.【答案】【解析】【分析】先利用基本不等式中“1”的妙用求得的取值范圍,從而求得的最大值.【詳解】因?yàn)檎龜?shù),滿足,所以,即,則,當(dāng)且僅當(dāng)且,即時(shí)取等號(hào),此時(shí)取得最小值9,則的最大值為.故答案為:17.若函數(shù)在區(qū)間上單調(diào)遞增,則實(shí)數(shù)的取值范圍是______.【答案】【解析】【分析】由復(fù)合函數(shù)的單調(diào)性計(jì)算即可得.【詳解】令,對(duì)稱軸為,∵函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞增,∴在上單調(diào)遞增,且,∴且,即且,解得,即實(shí)數(shù)的取值范圍為.故答案為:.18.若函數(shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是______.【答案】【解析】【分析】根據(jù)題意,將函數(shù)兩點(diǎn)問(wèn)題轉(zhuǎn)化為函數(shù)圖像交點(diǎn)問(wèn)題,然后列出不等式,即可得到結(jié)果.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn),則方程,即在區(qū)間上有兩個(gè)不等的實(shí)根,設(shè),,則函數(shù)在區(qū)間上有兩個(gè)交點(diǎn),顯然,當(dāng)時(shí),,此時(shí)兩函數(shù)只有一個(gè)交點(diǎn),不滿足;當(dāng)時(shí),為二次函數(shù),對(duì)稱軸為,開(kāi)口向上,與軸只有一個(gè)交點(diǎn),則,解得,即實(shí)數(shù)的取值范圍是.故答案為:四、解答題(本大題共5小題,共60分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)19.已知為銳角,.(1)求的值;(2)若,求的值.【答案】(1)(2)或【解析】【分析】(1)由同角三角函數(shù)的基本關(guān)系求解即可;(2)由題意利用同角三角函數(shù)的基本關(guān)系求得的值,再利用兩角差的正弦公式,求得的值.【小問(wèn)1詳解】為銳角,.【小問(wèn)2詳解】或.20.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)若方程在區(qū)間上恰有一個(gè)解,求的取值范圍.【答案】(1)(2)【解析】【分析】(1)根據(jù)題意,由二倍角公式以及輔助角公式化簡(jiǎn),再由正弦型函數(shù)的單調(diào)區(qū)間即可得到結(jié)果;(2)根據(jù)題意,列出方程,代入計(jì)算,即可得到結(jié)果.【小問(wèn)1詳解】由,得∴所求的單調(diào)遞增區(qū)間是【小問(wèn)2詳解】由,得或或∴由已知.21.麗水市某革命老區(qū)因地制宜發(fā)展生態(tài)農(nóng)業(yè),打造“生態(tài)特色水果示范區(qū)”.該地區(qū)某水果樹(shù)的單株年產(chǎn)量(單位:千克)與單株施肥量(單位:千克)之間的關(guān)系為,且單株投入的年平均成本為元.若這種水果的市場(chǎng)售價(jià)為元/千克,且水果銷路暢通.記該水果樹(shù)的單株年利潤(rùn)為(單位:元).(1)求函數(shù)的解析式;(2)求單株施肥量為多少千克時(shí),該水果樹(shù)的單株年利潤(rùn)最大?最大利潤(rùn)是多少?【答案】(1)(2)施肥量為時(shí),單株年利潤(rùn)最大為390元【解析】【分析】(1)由利潤(rùn)=單株產(chǎn)量售價(jià)成本,結(jié)合分段函數(shù)即可求解;(2)結(jié)合二次函數(shù)和基本不等式性質(zhì)分別求出和時(shí)對(duì)應(yīng)的,即可得解.【小問(wèn)1詳解】當(dāng)時(shí),,當(dāng)時(shí),,故;【小問(wèn)2詳解】當(dāng)時(shí),的對(duì)稱軸為,最大值為,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,綜上施肥量為時(shí),單株年利潤(rùn)最大為390元.22.已知函數(shù),且(1)求的解析式;(2)設(shè)函數(shù),若方程有個(gè)不相等的實(shí)數(shù)解,求的取值范圍.【答案】(1)(2)【解析】【分析】(1)列出方程,求出,得到解析式;(2)令,得到其單調(diào)性和奇偶性,換元得到在上有兩個(gè)不相等的實(shí)數(shù)根,進(jìn)而得到,設(shè)的兩根為,的兩根為,由奇偶性得到,進(jìn)而求出.【小問(wèn)1詳解】由題有時(shí),解得或,因?yàn)?,所以,故;【小?wèn)2詳解】由(1),則方程為設(shè),當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,可得則原方程可化為,令,因?yàn)?,故函?shù)為上的偶函數(shù),設(shè),,,,即函數(shù)在上單調(diào)遞增,由偶函數(shù)得在上單調(diào)遞減,最小值為故原條件等價(jià)于方程在有兩個(gè)不相等的實(shí)數(shù)根,即,解得,不妨設(shè)兩根為,的兩根為,由為上的偶函數(shù),可得,即,,所以.【點(diǎn)睛】方法點(diǎn)睛:復(fù)合函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題處理思路:①利用換元思想,設(shè)出內(nèi)層函數(shù);②分別作出內(nèi)層函數(shù)與外層函數(shù)的圖象,分別探討內(nèi)外函數(shù)的零點(diǎn)個(gè)數(shù)或范圍;③內(nèi)外層函數(shù)相結(jié)合確定函數(shù)交點(diǎn)個(gè)數(shù),即可得到復(fù)合函數(shù)在不同范圍下的零點(diǎn)個(gè)數(shù).23.函數(shù),表示不超過(guò)的最大整數(shù),例如:,.(1)當(dāng)時(shí),求滿足的實(shí)數(shù)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 心理咨詢師專業(yè)實(shí)踐手冊(cè)
- 專利申請(qǐng)與維權(quán)指導(dǎo)手冊(cè)
- 學(xué)校培訓(xùn)班管理制度
- 志愿者培訓(xùn)學(xué)員制度
- 機(jī)構(gòu)培訓(xùn)材料審核制度
- 2026年IT行業(yè)培訓(xùn)專員考試寶典與面試題
- 初中物理教師培訓(xùn)制度
- 教師繼續(xù)教育培訓(xùn)制度
- 電梯公司培訓(xùn)制度
- 借調(diào)人員參加培訓(xùn)制度
- 2025年勞動(dòng)關(guān)系協(xié)調(diào)師綜合評(píng)審試卷及答案
- CIM城市信息模型技術(shù)創(chuàng)新中心建設(shè)實(shí)施方案
- 二年級(jí)上冊(cè)100以內(nèi)的數(shù)學(xué)加減混合口算題500道-A4直接打印
- 班級(jí)互動(dòng)小游戲-課件共30張課件-小學(xué)生主題班會(huì)版
- 2025至2030全球及中國(guó)智慧機(jī)場(chǎng)建設(shè)行業(yè)發(fā)展趨勢(shì)分析與未來(lái)投資戰(zhàn)略咨詢研究報(bào)告
- 2025年二級(jí)造價(jià)師《土建工程實(shí)務(wù)》真題卷(附解析)
- 智慧農(nóng)業(yè)管理中的信息安全對(duì)策
- 2025年河南省康養(yǎng)行業(yè)職業(yè)技能競(jìng)賽健康管理師賽項(xiàng)技術(shù)工作文件
- 中學(xué)學(xué)生教育懲戒規(guī)則實(shí)施方案(2025修訂版)
- ISO 9001(DIS)-2026與ISO9001-2015英文標(biāo)準(zhǔn)對(duì)照版(編輯-2025年9月)
- 2024譯林版七年級(jí)英語(yǔ)上冊(cè)知識(shí)清單
評(píng)論
0/150
提交評(píng)論