版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北京市昌平區(qū)新道臨川校2022年中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)2.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)3.綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計綠豆發(fā)芽的概率是0.95;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③4.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個數(shù)是()A.4 B.3 C.2 D.15.已知,則的值是A.60 B.64 C.66 D.726.對于不等式組,下列說法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個整數(shù)解D.此不等式組無解7.如圖,小橋用黑白棋子組成的一組圖案,第1個圖案由1個黑子組成,第2個圖案由1個黑子和6個白子組成,第3個圖案由13個黑子和6個白子組成,按照這樣的規(guī)律排列下去,則第8個圖案中共有(
)和黑子.A.37 B.42 C.73 D.1218.下列圖形中,哪一個是圓錐的側(cè)面展開圖?A. B. C. D.9.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°10.下列運算正確的是(
)A.a(chǎn)2·a3﹦a6
B.a(chǎn)3+a3﹦a6
C.|-a2|﹦a2
D.(-a2)3﹦a6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB為⊙O的弦,C為弦AB上一點,設AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2﹣n2)π,則=______12.據(jù)統(tǒng)計,今年無錫黿頭渚“櫻花節(jié)”活動期間入園賞櫻人數(shù)約803萬人次,用科學記數(shù)法可表示為_____人次.13.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°14.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____15.已知拋物線開口向上且經(jīng)過點,雙曲線經(jīng)過點,給出下列結(jié)論:;;,c是關(guān)于x的一元二次方程的兩個實數(shù)根;其中正確結(jié)論是______填寫序號16.如圖,小明想用圖中所示的扇形紙片圍成一個圓錐,已知扇形的半徑為5cm,弧長是cm,那么圍成的圓錐的高度是cm.三、解答題(共8題,共72分)17.(8分)計算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);18.(8分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關(guān)系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?19.(8分)已知:如圖所示,在中,,,求和的度數(shù).20.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.21.(8分)某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質(zhì)疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是
;在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應的圓心角為
度;將條形統(tǒng)計圖補充完整;如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?22.(10分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)23.(12分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a(chǎn)=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.24.在第23個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果按,,,分為四個等級,并依次用A,B,C,D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計的數(shù)據(jù),繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:求本次調(diào)查的學生人數(shù);求扇形統(tǒng)計圖中等級B所在扇形的圓心角度數(shù),并把條形統(tǒng)計圖補充完整;若該校共有學生1200人,試估計每周課外閱讀時間滿足的人數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標為(,﹣1).故選A.【點睛】本題考查了正方形的性質(zhì)、坐標與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對應邊相等是解決問題的關(guān)鍵.2、C【解析】
作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關(guān)于x軸對稱,可知點D′的坐標為(0,﹣1).設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標特征;軸對稱-最短路線問題.3、D【解析】
①利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯誤;②根據(jù)上表當每批粒數(shù)足夠大時,頻率逐漸接近于0.950,所以估計綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.4、B【解析】試題分析:由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進行判斷;根據(jù)拋物線與x軸的交點個數(shù)得到b2﹣4ac>0,加上a<0,則可對②進行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對③進行判斷;設A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對④進行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.5、A【解析】
將代入原式,計算可得.【詳解】解:當時,原式,故選A.【點睛】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.6、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.7、C【解析】解:第1、2圖案中黑子有1個,第3、4圖案中黑子有1+2×6=13個,第5、6圖案中黑子有1+2×6+4×6=37個,第7、8圖案中黑子有1+2×6+4×6+6×6=73個.故選C.點睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.8、B【解析】
根據(jù)圓錐的側(cè)面展開圖的特點作答.【詳解】A選項:是長方體展開圖.B選項:是圓錐展開圖.C選項:是棱錐展開圖.D選項:是正方體展開圖.故選B.【點睛】考查了幾何體的展開圖,注意圓錐的側(cè)面展開圖是扇形.9、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關(guān)鍵是學會利用數(shù)形結(jié)合的首先解決問題,屬于中考常考題型.10、C【解析】
根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;合并同類項,只把系數(shù)相加減,字母與字母的次數(shù)不變;同底數(shù)冪相除,底數(shù)不變指數(shù)相減,對各選項計算后利用排除法求解.【詳解】a2·a3﹦a5,故A項錯誤;a3+a3﹦2a3,故B項錯誤;a3+a3﹦-a6,故D項錯誤,選C.【點睛】本題考查同底數(shù)冪加減乘除及乘方,解題的關(guān)鍵是清楚運算法則.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
先確定線段BC過的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結(jié)論.【詳解】如圖,連接OB、OC,以O為圓心,OC為半徑畫圓,則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過的面積為圓環(huán)的面積,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,過O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案為.【點睛】此題主要考查了勾股定理,垂徑定理,一元二次方程等知識,根據(jù)旋轉(zhuǎn)的性質(zhì)確定線段BC掃過的面積是解題的關(guān)鍵,是一道中等難度的題目.12、8.03×106【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).803萬=.13、B【解析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.14、【解析】
利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.15、①③【解析】試題解析:∵拋物線開口向上且經(jīng)過點(1,1),雙曲線經(jīng)過點(a,bc),∴,∴bc>0,故①正確;∴a>1時,則b、c均小于0,此時b+c<0,當a=1時,b+c=0,則與題意矛盾,當0<a<1時,則b、c均大于0,此時b+c>0,故②錯誤;∴可以轉(zhuǎn)化為:,得x=b或x=c,故③正確;∵b,c是關(guān)于x的一元二次方程的兩個實數(shù)根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,當a>1時,2a﹣1>3,當0<a<1時,﹣1<2a﹣1<3,故④錯誤;故答案為①③.16、4【解析】
已知弧長即已知圍成的圓錐的底面半徑的長是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長是5cm.就可以根據(jù)勾股定理求出圓錐的高.【詳解】設底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.三、解答題(共8題,共72分)17、(1)1;(2)2a+2【解析】
(1)根據(jù)特殊角銳角三角函數(shù)值、絕對值的性質(zhì)即可求出答案;(2)先化簡原式,然后將x的值代入原式即可求出答案.【詳解】解:(1)原式=﹣1+2﹣+2×=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【點睛】本題考查學生的運算能力,解題的關(guān)鍵是熟練運用運算法則,本題屬于基礎題型.18、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】
(1)設花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關(guān)系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關(guān)系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質(zhì)及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當x=3時,長=14﹣9=15>10不成立,當x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當x=m,有最大面積的花圃.【點睛】二次函數(shù)在實際生活中的應用是本題的考點,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程是解題的關(guān)鍵.19、,.【解析】
根據(jù)等腰三角形的性質(zhì)即可求出∠B,再根據(jù)三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【點睛】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知等邊對等角.20、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標,得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點C(,-),從而得PB=3-=,PC=;再分情況討論:①當△AOD∽△BPC時,根據(jù)相似三角形性質(zhì)得,
解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點C也在此圓上,則MC=MB,根據(jù)兩點間的距離公式得一個關(guān)于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點A、B(點A在點B的左側(cè)),∴A(a,0),B(3,0),當x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當△AOD∽△BPC時,∴,即,
解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點M,∵D、B、O三點共圓,且BD為直徑,圓心為M(,a),若點C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當a=時,D、O、C、B四點共圓.【點睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點共圓等,綜合性較強,有一定的難度,正確進行分析,熟練應用相關(guān)知識是解題的關(guān)鍵.21、(1)560;(2)54;(3)補圖見解析;(4)18000人【解析】
(1)本次調(diào)查的樣本容量為224÷40%=560(人);(2)“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)是:360°×84560=54o;(3)“講解題目”的人數(shù)是:560?84?168?224=84(人).(4)60000×=18000(人),
答:在課堂中能“獨立思考”的學生約有18000人.22、公路的寬為20.5米.【解析】
作CD⊥AE,設CD=x米,由∠CBD=45°知BD=CD=x,根據(jù)tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過點C作CD⊥AE于點D,設公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【點睛】本題考查了直角三角形的應用,解答本題的關(guān)鍵是根據(jù)仰角構(gòu)造直角三角形,利用三角函數(shù)解直角三角形.23、(1)4,6,(4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職工業(yè)機器人技術(shù)應用(機器人維護基礎)試題及答案
- 2026年廚房電器銷售(需求分析)試題及答案
- 2025年高職高聚物生產(chǎn)技術(shù)(高聚物生產(chǎn)應用)試題及答案
- 2025年中職煙草栽培與加工(煙草分級技術(shù))試題及答案
- 近七年北京中考物理試題及答案2025
- 養(yǎng)老院老人康復設施維修人員晉升制度
- 養(yǎng)老院工作人員保密制度
- 信息技術(shù)合同與項目管理制度
- 工行合規(guī)培訓課件
- 2026年醫(yī)師內(nèi)科學速記題庫含答案
- 天津市八校聯(lián)考2025屆高三上學期1月期末考試英語試卷(含答案無聽力原文及音頻)
- 2026屆遼寧省遼南協(xié)作校高一數(shù)學第一學期期末監(jiān)測試題含解析
- 2026瑞眾保險全國校園招聘參考筆試題庫及答案解析
- 2025年山東省棗莊市檢察院書記員考試題(附答案)
- 寒假安全教育課件模板
- 短視頻內(nèi)容版權(quán)協(xié)議2025年執(zhí)行版
- 社區(qū)康養(yǎng)服務活動方案
- 2025年數(shù)字印刷可行性報告
- 畜禽屠宰加工工國家職業(yè)標準(征求意見稿)
- 電力通信安全培訓資料課件
- 上海國安面試題庫及答案
評論
0/150
提交評論